腹腔镜胆囊切除术 (LC) 是切除胆囊的标准手术。虽然该手术已发展成为一种相对安全且可耐受的日间手术,但有时可能会很困难,并且可能会出现并发症。复杂的胆结石疾病,如胆囊炎或胆结石性胰腺炎,是增加 LC 技术难度的危险因素。虽然可以对手术难度进行术前预测,但围手术期发现可能会令人惊讶。使用基于 AI 的模型了解手术场景的难度对于对手术性能进行基准测试和改进手术室规划非常重要。本研究旨在开发一种深度学习 (DL) 来预测腹腔镜胆囊切除术在特定手术发现上的难度。基于 Nassar 评分使用了难度分级量表。为了训练 DL 网络,从录制的视频中提取了帧。所有帧均标记为“胆囊”难度 1-3 级和“粘连”难度 1-3 级。排除由体外图像组成或胆囊不可见的帧。总共有 26.483 帧。ResNet 用作模型的主干。调整超参数以改善模型结果。多类和二元分类网络都经过了训练。训练用于分类胆囊难度(3 级)的网络比训练用于分类粘连难度的网络表现更好(准确率 74%)。可以对胆囊炎进行分类,准确率为 91%,对简单病例进行分类,准确率为 87%。本研究结果可作为进一步研究 LC 难度分类的起点。这是提高对手术场景理解并为 LC 外科医生提供基准的第一步。
目的:这项定量研究旨在确定出院教学,焦虑,抑郁以及各种人口统计学和疾病相关的因素是否可以预测中国西部地区宫颈癌手术患者的出院准备。方法:从2023年11月到2024年5月,采用便利抽样方法来对新疆的高等级A专业医院的宫颈癌手术患者进行调查表。调查包括一份患者一般信息问卷,出院教学量表(QDTS),广义焦虑症7-项目量表(GAD-7),一份调查表评估了在增强的康复(ARAS)模型恢复(ARAS)模型和PHENAIRE-9(PHQ-9)(恢复后的康复(ARAS)中,妇科恶性肿瘤肿瘤手术患者的准备就绪。多元线性回归分析用于识别影响排放准备就绪的因素。结果:总共参加了180名宫颈癌手术患者,在ERAS模型下的妇科恶性肿瘤排出就绪问卷中的平均得分为190.46±25.36。多个线性回归分析表明,教育水平,慢性疾病,药物使用,出院教学质量和抑郁情绪是宫颈癌手术患者出院准备的重要预测指标。结论:发现宫颈癌手术患者的总体排出准备状态处于中等状态。护士应优先考虑具有较低教育水平,慢性病,抑郁症和需要药物治疗后的患者。应制定个性化的健康指导和有针对性的干预措施,以提高出院教学的质量,从而提高患者的出院准备。关键词:宫颈癌,手术,出院准备,出院指令的质量,抑郁>
随着转移性癌症患者的存活率提高,长期对脑转移的局部控制已成为越来越重要的临床优先事项。虽然共识指南建议手术,然后进行> 3 cm病变的立体证明放射外科手术(SRS),但单独使用SRS治疗的较小病变(≤3cm)会引起可变反应。为了确定对SRS变量反应的影响的因素,我们分析了未经框架基于框架单分数SRS治疗的未经全身治疗的患者的脑转移结果≤3cm。SRS之后,1733年中有259个(15%)治疗的病变证明了有关局部治疗失败(LTF)的MRIIFIST,其中202/1733(12%)证明了LTF和54/1733(3%)(3%)具有不良辐射效应。多变量分析表明肿瘤大小(> 1.5 cm)和黑色素瘤组织学与LTF率较高有关。我们的结果表明,≤3cm的脑转移对SRS并不均匀地响应SRS,并表明对单独的SR或与手术结合对脑转移的作用进行了前瞻性研究,并保证与肿瘤大小和组织学相匹配的脑转移量≤3cm。这些研究将有助于建立多学科治疗指南,以改善局部控制,同时最大程度地减少脑转移治疗期间的辐射坏死。
治疗前的晚上,在治疗前一天晚上午夜后不进食或喝任何东西。如果您已经开了口服药物,请仅用一小口水或按照指示服用它们。到达后准备好的日子,您将换成医院礼服。护士将在您的手或手臂上放一根小针(IV),以便在需要时给药,而IV对比染料。头部框架由神经外科医生施加到您的头部。框架放置可能会引起一些疼痛。在框架放置前,局部麻醉用于使您的头皮上的4个位点麻木4个位点(额头上的2个位置,在头部背面2个)。这大约需要15-20分钟。CT扫描放置框架后,您将进行CT扫描。这将有助于查明治疗区域的确切位置和大小。它也用于治疗计划。CT后,您将在舒适的区域等待治疗。电视可供您使用。如果您从未进行过CT扫描,请让护士知道。您将获得一个详细描述的讲义。饮食在CT扫描后您将能够吃饭和喝。请在治疗的那一天喝额外的液体。尝试多喝1-2夸脱的液体。这将从您的系统中冲洗染料。完成CT扫描后,您将获得一顿饭。
粗体:血氧水平依赖性 SDF:侧流暗场 CLE:共聚焦激光显微内镜 DSA:数字减影血管造影 ICG-VA:吲哚菁绿视频血管造影 MDU:微血管多普勒超声 FUS:功能性超声 CEU:造影增强超声 声明:所有作者均已阅读并批准稿件,并同意以下要求:
摘要 — 目的:开颅手术是切除部分头骨,以便外科医生进入大脑并治疗肿瘤。进入大脑时,组织会发生变形,并可能对手术结果产生负面影响。在这项工作中,我们提出了一种新颖的增强现实神经外科系统,将从 MRI 获得的术前 3D 网格叠加到手术期间获得的大脑表面视图上。方法:我们的方法使用皮质血管作为主要特征来驱动刚性和非刚性 3D/2D 配准。我们首先使用特征提取器网络来生成概率图,并将其输入到姿势估计器网络以推断 6-DoF 刚性姿势。然后,为了解释大脑变形,我们添加了一个非刚性细化步骤,该步骤使用基于物理的约束将其表述为形状模板问题,有助于将变形传播到皮质下水平并更新肿瘤位置。结果:我们在 6 个临床数据集上回顾性地测试了我们的方法,并获得了较低的姿势误差,并使用合成数据集表明可以在皮质和皮质下水平实现相当大的脑移位补偿和较低的 TRE。结论:结果表明,我们的解决方案实现了低于实际临床误差的准确度,证明了我们的系统在实际应用中的可行性。意义:这项工作表明,我们可以使用单个摄像机视图提供通过开颅手术观察到的 3D 皮质血管的连贯增强现实可视化,并且皮质血管为执行刚性和非刚性配准提供了强大的功能。
面具以两张塑料片开始。制作口罩的治疗射线照相师会在特殊设计的烤箱中逐个温暖它们,直到它们柔软而柔软。第一张纸是在头部背面模制的,第二和第三张纸在您的脸上轻轻模制。塑料会很温暖,但是这个过程并不舒服。一个小的塑料矩形将安装在面罩的前面,以便您轻轻地静置牙齿(如上图所示)。这也有助于保持您的静止。
协调中心:华盛顿大学医学院首席研究员:道格拉斯·R·阿德金斯(Douglas R. Adkins),医学博士电话:(314)362-4471电子邮件:dadkins@wustl.edu sub-Investigators机构机构Ravindra Uppaluri,M.D。,Ph.D。 Dana Farber癌症研究所耳鼻喉科Max Artyomov博士华盛顿大学病理学/免疫学丽贝卡·切诺克(Rebecca Chernock),医学博士华盛顿大学头部和颈部病理学Hiram Gay,医学博士 华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士 华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学头部和颈部病理学Hiram Gay,医学博士华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。华盛顿大学耳鼻喉科Randal Paniello,医学博士华盛顿大学耳鼻喉科Jay Piccirillo,医学博士华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684
这种新颖的骨科手术,横向胫骨运输 (TTT),包括在胫骨上创建一个小骨窗,并使用专门的装置刺激骨窗的受控运动。这增加了患肢的血流量,防止进一步的组织坏死,并减少了截肢的需要。2024 年 5 月,NTFGH 团队首次将该手术引入新加坡。这项技术对于逆转 43 岁刘铭杰 (Lau Ming Jie) 足部进行性坏疽的恶性循环、增强血管化和帮助康复至关重要。TTT 手术后,使用双管游离腓骨瓣进行重建,其中涉及利用明杰左腿的一部分腓骨来重建他缺失的跖骨。这有助于重建正常行走所必需的足弓。随着感染得到控制和足部重建,明杰恢复了独自行走的能力。这是首次在同一患者身上同时实施两种手术。治疗成功不仅保住了他的腿,也标志着新加坡医疗实践的显著成就,为未来的糖尿病足管理开创了先例。这表明,这种分阶段重建方法,结合 TTT 和游离腓骨皮瓣,可以成为矫形外科的一种有用方法,为患有严重糖尿病足感染的患者带来希望,否则他们可能会因大截肢而失去肢体。
在佛罗里达州布埃纳维斯塔湖(Lake Buena Vista)举行的第17届年度国际立体定向身体放射治疗(SBRT)和立体定向放射外科(SRS)将召集世界,脊柱和身体靶向的立体定位辐射模态和技术的世界领导者。教师和参与者将有三天的时间讨论涉及多个器官部位的良性和恶性肿瘤的进展。将为特定器官特定的技术和临床经验提供与教职员工和系统供应商互动的机会。