摘要。土工布都是用于掩埋的应用,而无需暴露于阳光。但是,安装之前可能会发生短暂的阳光。由于安装和土壤埋葬的潜在延迟,需要材料才能达到紫外线阻力。人造紫外线风化将评估意外接触阳光的潜在风险。光降解反应考虑与暴露条件的相互作用以及对阳光的聚合物敏感性。基于实验室测量和现场数据,本文评估了光强度,温度和湿度对气候的影响。使用其紫外线灵敏度与有效辐照度的聚合物关系,计算出累积指数,以降低土工布服务寿命从暴露到阳光。人工风化循环,并与聚丙烯和聚对苯二甲酸酯的特定降解机理进行比较,并与特定的降解机制有关。反应速率分别与温度相关,分别针对每个聚合物。提出了使用辐射能量和温度的模型,以指导部分紫外线暴露的土工织物的寿命预测。
奖项: - 荣获印度尼西亚共和国总统颁发的 Satyalancana Wirakarya 奖,该奖特别授予他“为印度尼西亚国家和民族做出的杰出贡献(设计和卫星开发)奖,以便为他人树立榜样。” - 国家航空航天研究所 (LAPAN) 主席授予他 2015 年杰出员工奖。 - 印度尼西亚共和国研究与技术部长授予他 2013 年 LAPAN-A2 卫星开发团队杰出工作奖 - 印度尼西亚共和国总统授予 Satyalancana Karyasatya 10 年和 20 年服务奖。该奖项授予他数十年来在印度尼西亚公务员队伍中忠诚、忠实的服务和奉献精神。 - 印度尼西亚论坛和亚洲企业创新 (CIAS) 授予他 2022 年创新英雄奖 - 2023 年 IEEE R10 亚太杰出志愿者奖
残疾/可及性服务:根据《康复法》第504条,《美国残疾人法》(ADA)和《 ADA修正案法》(ADAAA)(德克萨斯州泰勒大学)为学习,身体和心理残疾的学生提供住宿。如果您患有残疾,包括不可访问的诊断,例如学习障碍,慢性病,TBI,PTSD,ADHD,或者您在以前的教育环境中有修改或住宿的历史,则鼓励您访问https://hind.accessiblearning.com/uttyly.com/uttyler和填写新生的学生。在提交申请时,学生可访问性和资源(SAR)办公室将与您联系,并与助理董事学生服务/ADA协调员Cynthia Lowery任命。有关更多信息,包括填写服务申请,请访问SAR网页http://www.uttyler.edu/disabilityservices,位于大学中心的SAR办公室,#3150,或致电903.566.7079。
残疾/可及性服务:根据《康复法》第504条,《美国残疾人法》(ADA)和《 ADA修正案法》(ADAAA)(德克萨斯州泰勒大学)为学习,身体和心理残疾的学生提供住宿。如果您患有残疾,包括不可访问的诊断,例如学习障碍,慢性病,TBI,PTSD,ADHD,或者您在以前的教育环境中有修改或住宿的历史,则鼓励您访问https://hind.accessiblearning.com/uttyly.com/uttyler和填写新生的学生。在提交申请时,学生可访问性和资源(SAR)办公室将与您联系,并与助理董事学生服务/ADA协调员Cynthia Lowery任命。有关更多信息,包括填写服务申请,请访问SAR网页http://www.uttyler.edu/disabilityservices,位于大学中心的SAR办公室,#3150,或致电903.566.7079。
首次使用可聚合表面活性剂的伽马辐射引起的微乳液聚合剂制备了含有抗菌和紫外线激活涂层的相变材料的多功能纳米胶囊。首先,可聚合的表面活性剂,聚(2-甲基丙烯酰氧基十二烷基二甲基二甲基氯化铵-4-甲基丙烯酰氧基苯甲酮) - 甲基丙烯酸二甲基丙烯酸甲酯 - 二甲基二二酯 - 二氧化物 - 二(QAC 12 -BP) - be-bp-bpmma-iium ang bimma and Qualthary Ammon Ammon Ammon andon Ammon Nary Ammon,溶液碘转移聚合(溶液ITP)。之后,使用p(qac 12 -bp)-b-pmma-i As Polymeriz surfactants surfactantants制备了γ辐射引入的甲基甲基丙烯酸甲酯(MMA)(MMA)(MMA)和二氨基苯(DVB)(DVB)(DVB)的微型乳化聚合。加入从格拉姆辐射引发的连续水相中的羟基自由基,并用单体添加并逐渐成长为表面活性或z-商,它进入了由p(qac 12 -bp)-b -pmma-i链稳定的单体液体。在表面上获得了最终的P(MMA-DVB)/OD纳米胶囊,锚定P(QAC 12 -BP)-B -PMMA-I链在表面上获得。仅在1.5小时内,聚合顺利进行,并达到高转化率(≥90%)。获得的乳液具有高胶体稳定性而无需凝结。聚合物纳米胶囊是球形的,大小约为180 nm,高电荷(> +70 mV)。由于含有QAC 12和BP段的粒子表面,可以将基于BP组的UV激活的共价键覆盖在织物上,而它们由于呈现QAC 12而具有很高的抗细菌活性潜力。获得的聚合物乳液可用作具有抗菌特性的基于喷雾的热储存涂层。
当前,检测葡萄糖的大量方法显示出较高的有效性。但是,这些应用不再仅专注于临床分析,而是在医学,生物和食品领域[2],即建立新参数。和更大的特异性。因此,有必要研究以葡萄糖定量已知的方法。在临床区域,葡萄糖检测已分为两组:i)单个测量和ii)连续测量。在第一个分类中是葡萄糖和尿液测试条。两种方法都通过生物标志物或酶的葡萄糖氧化均采用了安培检测方法。另一方面,在连续监测方法中,有些人使用侵入性,无创(Ni)或最小侵入性(MI)技术,其中包括电化学,电化学,光学发光,光学和机械检测机制[3-7]。现有的葡萄糖传感的光学方法基于人体各种液体的折射率的测量(例如眼部水性幽默[6,8]),或者是人类血液的红外吸收[9]。我们研究了一种基于水溶液中葡萄糖的紫外线光吸收的不同方法。
可打印的光学活性材料有限,需要定制的墨水配方。为了解决功能材料的有限可用性用于光电设备的喷墨制造,需要探索适用于具有不同组成的纳米颗粒的多功能墨水配方策略。这还将为在单个设备中探索多个纳米颗粒的探索新机会,以达到特定的光谱敏感性。在这里,我们开发了GQD的可打印墨水公式,nay-f 4:(20%yb和/或2%ER掺杂)UCNPS和PBS QDS Inks,并展示了它们用于基于石墨烯的光电探测器和荧光显示器等设备。通过开发和优化墨水配方,打印策略和沉积技术,以可控的方式沉积了光敏的纳米材料层,并将其集成到印刷的异质结构中。我们通过将其用作单层石墨烯(SLG)光电材料中的表面函数化层来体现纳米材料墨水制剂的潜力,其中可以实现r b 10 3 a w 1的光反应率,并且可以从gqd/slg到nir/slg和slg和slg dep dep dep and slg and slg和ppb and slg和pbs slg和pbs slg slg and slg slg和pps。我们还探索了多个墨水的沉积到一个结构中,说明可以产生诸如荧光显示器之类的设备,因为我们在此处使用CSPBBR 3 Perovskite NCS和UCNP喷墨印刷在柔性透明底物上。这项工作扩展了可打印的光活性纳米材料的材料库,并展示了其前瞻性用于印刷光电材料(包括柔性设备)。
1 荷兰乌得勒支大学医学中心 CDL 研究,乌得勒支大学,乌得勒支。2 荷兰乌得勒支大学乌得勒支药学研究所药剂学系。3 瑞典斯德哥尔摩卡罗琳斯卡医学院生物分子与细胞医学部实验室医学系。4 瑞典斯德哥尔摩卡罗琳斯卡大学医院胡丁厄细胞疗法和同种异体干细胞移植系 (CAST) 5 瑞典胡丁厄卡罗琳斯卡 ATMP 中心,ANA Futura 6 牛津大学儿科系,牛津,英国。7 英国牛津发育与再生医学研究所 (IDRM)。8 荷兰乌得勒支大学医学中心威廉敏娜儿童医院儿科呼吸医学系。 9 乌得勒支再生医学,乌得勒支大学医学中心,乌得勒支,荷兰。 * 通讯作者:ogdejong@uu.nl