光频梳(OFC)是一种基于激光的技术,具有转化的计量学,可以以未经先验的精度实现时间和频率测量。超出了其最初的目的,OFC已在基本科学和新兴技术的各个领域采用,例如Au sosos驾驶和无线通信。然而,目前以高度重复速率产生低噪声OFC来源的挑战,具有较高的光学带宽阻碍了其全部潜力。为了应对这些挑战,非线性光纤中的超智能(SC)生成是一种有吸引力的方法,因为它可以在相对较低的泵功率下提供大带宽,但以噪声扩增为代价。本论文探讨了产生基于低噪声SC的OFC来源的新方法,以满足这些新型范围的不断增长的需求。第一个提出的解决方案是一种混合纤维,结合了两种SC生成制度的最佳品质。使用此纤维,可以将超低噪声纤维SC覆盖,覆盖930–2130 nm范围,相位相干性接近统一,频谱分辨出相对强度噪声(RIN)低至0。05%,平均0。01%在750 nm的带宽上,接近接近泵激光噪声的理论极限。这项工作的第二个重要结果是开发了一种新的数值方法,能够模拟在非线性纤维中传播的整个超快脉冲列车并研究其噪声性能的演变。最后,引入了空心核纤维,是达到新的SC制度(包括深紫外线和TW峰值功率)的一种有希望的方法。We use this model to corroborate and explain measurements of unprecedented low noise observed on a dual-comb SC source, including shot-noise-limited SC generation and up to 20 dB of RIN suppression.
摘要。我们报告了使用扭转和双轴定向的聚乙二醇苯二甲酸酯铰链的两轴可易剂显微镜镜。研究了基于四个或单线电磁执行器的两种不同的设计。开发了一种基于微加工的工厂过程,以实现高模式分辨率和对准精度并减少手动组件的量。具有扭转铰链,快速轴的谐振频率为300至500 Hz,水中有200至400 Hz。带有弯曲的铰链,慢速轴的共振频率为60至70 Hz,水中的谐振频率为20至40 Hz。2D B扫描和3D体积超声显微镜使用杂交扫描镜进行了证明。在直流或非常低的频率下扫描慢轴的能力允许形成密集的栅格扫描模式,以改善成像分辨率和视野。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jom.1.4.044001]