已经发现各种生长因子在伤口愈合中起作用,包括血小板衍生的生长因子(PDGF),表皮生长因子,成纤维细胞生长因子,转化生长因子和胰岛素样生长因子。已广泛研究了局部应用的自体PDGF,以在伤口愈合中进行临床使用,因为血小板是PDGF的丰富来源,转化生长因子和血管内皮生长因子。可以从离心自体血的样品中制备悬浮在血浆中的自体血小板浓缩物,也称为富含血小板的血浆(PRP)。纤维蛋白原的聚合会产生血小板凝胶,然后可以用作手术的辅助,以促进止血和加速愈合。在手术室设置中,PRP已被研究为各种牙周,重建和骨科手术的辅助手术,例如与牙周和上颌骨外壁相结合(使用自体移植物或自体移植物或牛衍生的Xenograft)在牙周和上颌骨外缘中。
基于我在四个国家(加拿大、阿富汗、印度和肯尼亚)三十年的民族志研究,我们决定撰写五章,每一章都提出一个观点,形成一个引人入胜的圈子。第 1 章强调了边缘人群已经具备了关于遭受社会压迫和种族主义暴力的感受的知识。因此,他们为成为和存在的替代方式绘制了路径。第 2 章强调了故事在跨越社会政治和文化界限创造对话和交谈空间方面的潜力。第 3 章关注记忆。记忆体现为活生生的历史,为痛苦和苦难赋予了人性,呼吁有同理心的观众出现。第 4 章呼吁读者踏上跨国知识圈的外缘,揭示关于社会正义的替代和非霸权知识。第 5 章强调了神圣传统、心灵认识论的价值。”它呼吁我们所有人在道德和政治上积极参与社会边缘人群的斗争和愿望。这个圈子必须继续展开,才能“在黑暗时代带来光明”。
算盘发明于公元前 500 年左右的中东,直到 17 世纪中叶,它仍然是最快的计算器,这足以说明算盘的聪明才智。1642 年,年仅 18 岁的法国科学家兼哲学家布莱斯·帕斯卡 (Blaise Pascal,1623-1666) 发明了第一台实用的机械计算器 Pascaline,以帮助他的收税员父亲做算术运算。这台机器有一系列互锁的齿轮(外缘有齿的齿轮),可以加减十进制数。几十年后,在 1671 年,德国数学家兼哲学家戈特弗里德·威廉·莱布尼茨 (Gottfried Wilhelm Leibniz,1646-1716) 发明了一台类似但更先进的机器。它没有使用齿轮,而是有一个“阶梯式滚筒”(边缘有长度不断增加的齿的圆柱体),这一创新在机械计算器中存活了 300 年。莱布尼茨机器的功能比帕斯卡的机器多得多:除了加减运算外,它还能乘、除和计算平方根。另一个开创性的功能是第一个内存存储器或“寄存器”。
条件是专门为本研究创建的。风速设置为 80 kt(150 公里/小时),相当于蒲福风级 17° 风暴强度时的风速。飓风期间也可以发现类似的风速。除了风力变化外,ILS 的另一个困难是,当超过 1,500 英尺时,风向会发生变化。风引起的湍流强度设置为最高水平。图 8 显示了 a) 在 Google Earth 中制作的 3D 路径着陆进近,以及 b) 使用 FS Instructor 创建的显示下滑道以及应用的理想 GP 线的图表。可以看出,ILS 未能引导飞机进入跑道。在进近开始时,飞机偏离了理想下滑道。由 ILS 引导的飞机在距离跑道外缘约 15 米处着陆。在这种情况下着陆时,飞行员有责任中断进近。如果在达到决策高度时发生这种情况,飞机将不会位于跑道轴线上。
本报告旨在评估市场上现有的测深 LiDAR(光探测和测距)系统,以便为爱尔兰政府采购一套系统。爱尔兰国家海底调查局(INSS)绘制了超过 468,500 平方公里的海床;大多数调查区域位于爱尔兰领海海床的外缘。INSS 的后续项目是 INFOMAR:综合测绘 为了爱尔兰海洋资源的可持续发展,这是一项为期 20 年的调查计划,于 2006 年启动。INFOMAR 提议的海床测绘将包括我们具有商业价值的近海区域的测绘,因此也许现在最重要的测绘工作迫在眉睫。这种近海测绘的大部分区域(可达 7000 平方公里)都可以使用 LiDAR 有效地绘制;LiDAR 是一种安装在轻型飞机上的测深光探测和测距仪器,因此可以快速高效地对大面积区域进行测量。爱尔兰海洋研究所和地质调查局将利用 INSS 和随后的 INFOMAR 获取的数据,通过提高水深测量的质量和准确性,将爱尔兰的海图带入 21 世纪,从而履行爱尔兰在 SOLAS 下的义务。爱尔兰是《国际海上人命安全公约》的签署国。2002 年 7 月生效的新修正案要求爱尔兰“安排收集和汇编水文数据并发布,diss
背景:各种检测方法导致了有关Duchenne和Becker肌肉营养不良疾病(MDC)中心脏病患病率的冲突报告。方法:我们对77个遗传确认的MDC母亲,22个非携带者母亲和25个对照进行了前瞻性队列研究。所有参与者都接受了心肺运动测试(CPET)和心脏磁共振成像(CMR)。结果:25%的携带者在锻炼恢复(收回)中具有心室外缘,而不是1个非携带者,没有对照(p = .003)。年龄或最大氧气消耗没有差异。11载体具有CMR的持久性(B 55%)左心室射血分数。在48%的MDC,1名非携带者患者和无对照组受试者的48%中指出了Gadolinium增强晚期(LGE)的证据(P B .0001)。LGE+和LGE-主题的子集分析显示了年龄的差异(44.1 V 38.6年。; p = .005),(38.9%V 10.5%,p = .004)和高血清肌酸激酶(CK)(n 289 u/l; 52.8%v 31.6%,p = .065)。结论:我们在遗传证实的MDC中使用CPET和CMR描述了疾病的患病率。49%的汽车人有纤维化,占5%的非携带者,强调了基因检测在该人群中的重要性。尽管心肌病,跑步机的功能评估是正常的,这说明了心脏和骨骼肌撞击的差异。年龄,回收和血清CK似乎在预测心理 - 局势方面具有重要作用。血清CK水平表明,全球疾病的严重程度更高而不是组织异质性可能是该人群中心脏病和相对幸免的骨骼肌疾病的病因。临床试验登记https://clinicaltrials.gov/ct2/show/nct02972580?term=mendell&cond = duchenne+肌肉+肌营养不良= 5; Clinicaltrials.gov识别器:NCT02972580©2020 Elsevier B.V.保留所有权利。
引言青光眼是导致失明的常见视网膜疾病,占 13%。视网膜结构发生变化,逐渐导致周边视力丧失,如果不及时治疗,最终会导致失明。青光眼目前无法治愈,但及早发现和治疗有助于防止视力丧失。由于人工诊断过程昂贵且容易出错,因此人们致力于在早期实现青光眼的自动检测 [1]。青光眼是一组与视野同时出现功能障碍有关的眼部疾病。结构变化的症状是神经视网膜边缘缓慢缩小,表示视神经轴突和星形胶质细胞退化。由于视神经的任何丧失都无法恢复,因此及早发现和治疗对于患者保留视力至关重要。青光眼主要分为两种类型:1) 原发性开角型青光眼 (POAG) 和 (ii) 闭角型青光眼 (ACG)。前者进展缓慢,有时几年内视力不会明显下降。如果早期诊断,治疗包括药物治疗。后者需要手术,因为需要切除一小部分虹膜外缘。在最新研究中,人们投入了大量精力基于计算机视觉自动诊断青光眼。青光眼分析系统的结构取决于所使用的图像提示和图像模式的类型。在用于诊断青光眼的结构图像提示中,基于视盘和视杯的提示非常重要。视盘位于聚集在视网膜中的神经节纤维附近。视杯是视盘凹陷的地方,纤维从这里通过视神经头 (ONH) 从视网膜出来。需要找到杯状和视盘结构的边界,因为它有助于评估青光眼的线索,如视盘和杯状不对称和高杯状与视盘比 (CDR),后者被描述为垂直杯状直径与垂直视盘直径之间的比率。在物理勾勒出视盘和杯状的轮廓后,通过彩色眼底图像的平面测量来评估 CDR 的值。由于手动注释每个图像的杯状和视盘的过程涉及
tions(UPPE)求解器[38]。这些结果与等离子体柱的整体尺寸相符,但也表明整个等离子体具有丰富的细尺度结构(正如我们在多丝状区域所预期的那样[39-41])。在本文中,我们进行了简化,没有包括细尺度等离子体扰动。由于强度钳制,等离子体柱近似为具有恒定密度的中心核,然后沿径向下降 100μm,在外半径 r pl 处密度为零。速度分布由我们的 PIC 代码确定:给定 E(⃗x,t),空气以 W 速率电离[35],新电子在脉冲的剩余部分中加速[28](执行这些计算的代码包含在[31]中)。一般而言,速度分布受 γ = 1 附近强场电离细节(例如 [ 42 ])和成丝过程中激光脉冲变形的影响。在本文中,我们进一步简化并假设电子以零初始速度电离,然后由高斯脉冲的剩余部分加速(具有 ˆ x 极化并在 + z 方向上传播)。整体而言,初始 N e 是高度非麦克斯韦的,在 100 Torr 时具有峰值动能 K tail ≃ 5 eV,平均动能 K avg ≃ 0. 6 eV,而在 1 Torr 时这些值增加到 K tail ≃ 16 eV 和 K avg ≃ 2 eV。对于 3.9 µ m 激光器,动能大约大 25 倍,因为激光强度相当且能量按 λ 2 缩放。接下来我们考虑等离子体柱的演变。给定 N e ,我们构造等离子体的横向薄片,在纵向 ˆ z 使用周期性边界条件(由于电子速度只是 c 的一小部分,因此这对领先阶有效),并使用我们的 PIC 代码模拟径向演变。德拜长度相当小:λ Debye ≃ 10 nm,因此我们使用能量守恒方法 [43] 来计算洛伦兹力。电子-中性弹性碰撞频率 ν eN 取决于 O 2 和 N 2 的截面,对于我们的能量来说大约为 10 ˚ A 2 [44]。反过来,电子-离子动量转移碰撞频率由 ν ei = 7 给出。 7 × 10 − 12 ne ln(Λ C ) /K 3 / 2 eV ,其中 Λ C = 6 πn e λ 3 Debye [45]。然后将得到的径向电流密度 J r 和电子密度 ne 记录为半径和时间的函数(更多详细信息可参见 [31] 的第 3 部分)。这些结果可以很好地分辨,网格分辨率为 ∆ x = ∆ y = 2 µ m,等离子体外缘的大粒子权重为 ∼ 10。图 1 中给出了 100、10 和 1 Torr 下 PW 模拟中λ = 800 nm 的电子数密度。t = 0 时等离子体外缘具有简化的阶跃函数轮廓,在半径 r pl = 0 处 ne = 10 20 m − 3。 5 毫米。因此,除了从等离子体边缘发射出脉冲波外,在内部激发出约 90 GHz 的相干径向等离子体频率振荡 [ 46 ],在表面激发出约 63 GHz 的 SPP [ 33 , 34 , 47 ]。扩展到中性大气中的 PW(r > r pl)对密度不敏感
