当雄性精子细胞与雌性卵细胞结合时,这会产生受精卵细胞,也称为合子。在这种结合后立即开始,随着2个细胞变为4,并向前开始,细胞繁殖的快速过程开始,直到产生了称为胚泡的空心细胞球(请参见下面的图形)。出现胃,就像一个空心的马蹄形结构一样,具有三个不同的细胞层的开始。最后,有三个主要的细菌层所在的胚胎(也称为蛋黄囊)的形成。发育的胚胎阶段始于受试者受精后的大约两周,一直持续到妊娠的第八周。人类是占地去的,这意味着它们具有从三个胚胎细胞层衍生的物体,即三个胚胎层。这三层称为内胚层,中胚层和外胚层。
1 Zhejiang University, 2 Soochow University 12:15 - 13:30 MoN2 - Lunch @ EA Level 1 Foyer Session PN1 - Editorial & Career Panel - Engineering Auditorium Chair: Andy Tay, National University of Singapore PANELLISTS Jill ARUL (Wildtype Media) Irem BAYINDIR-BUCHALTER (Advanced Materials, Wiley) Caroline BEYER (Nature Reviews Bioengineering) Bruno卡斯特罗(自然材料)小陈(ACS Nano)Jack Leeming(Nature Masterclass)12:15-13:30 session PS1-海报1- EA级别1门厅136-牙纸浆干细胞衍生的外胚层LADEN LADEN LADEN LADEN LADEN LADEN凝胶可通过miR -486-5p -5p -5p -respied himed head thinge>
多梳抑制复合物 1 和 2 (PRC1 和 2) 是发育基因可遗传抑制所必需的。导致哺乳动物多梳抑制表观遗传的顺式和反式因子尚不完全清楚。本文表明,在人类细胞中,异位诱导的最初活跃的发育基因的多梳沉默,而不是普遍表达的管家基因附近,在许多细胞分裂中是可遗传的。出乎意料的是,沉默在 PRC2 的胚胎外胚层发育 (EED) 亚基的 H3K27me3 结合口袋发生突变的细胞中是可遗传的,已知突变会破坏 H3K27me3 识别并导致 H3K27me3 丢失。这种遗传模式不太稳定,需要完整的 PRC2 和 PRC1 对 H2AK119ub1 的识别。我们的研究结果表明,Polycomb 沉默的维持对局部基因组环境敏感,并且可以由 PRC1 依赖的 H2AK119ub1 和 PRC2 介导,而不依赖于 H3K27me3 识别。
图 1. 人类 iPSC 发育成脑类器官的代表性图像。(A) 健康个体的人类诱导多能干细胞集落。(B) 接种在圆底板中的 DIV2 胚状体。(C) DIV7 胚状体,神经外胚层的形成表现为胚状体周围的光晕。(D) DIV10 胚状体嵌入 Matrigel 中,支持神经上皮的形成。(E) DIV13 脑类器官,神经花结的存在代表干细胞分化为神经祖细胞。(F) DIV34 脑类器官,其中类器官的直径 >1,000 µm。(G) DIV35 类器官中神经元前体 SOX2(红色)和成熟神经元 NeuN(白色)的免疫组织化学染色。
视网膜是中枢神经系统(CNS)的扩展,与中枢神经系统共享共同的胚胎学起源。神经感觉视网膜和中枢神经系统从神经外胚层发展[1]。使用非侵入性视网膜成像方式诊断和监测神经退行性疾病的兴趣越来越大。多发性硬化症(MS)是一种自身免疫性疾病,其特征是CNS的炎症,脱髓鞘以及神经元和轴突变性,可能会出现视觉症状。视网膜变化也可能反映神经退行性疾病[2-6]。研究表明,多发性硬化症中不同视网膜神经层的感情。green等人在MS中具有视网膜组织,并描述了多发性硬化症中神经节和内部核细胞层核损失的视网膜广泛的视网膜[7]。尽管MS是一种脱髓性疾病,人类视网膜缺乏髓磷脂,但炎症
HOX基因编码所有双遗物体中指定前轴的进化保守转录因子。HOX蛋白功能以其在外胚层衍生物(例如CNS和脊髓)中的作用而闻名。虽然在脊椎动物骨骼的情况下进行了很好的描述,但对HOX功能在不同肌肉类型的发展中的了解少得多。与脊椎动物相比,在果蝇果蝇中,对果实的果蝇的研究为在肌源性过程的多个阶段的多个阶段提供了宝贵的见解。在这里,我们提供了果蝇和脊椎动物肌肉发育中HOX蛋白功能的全面概述,重点是在此过程中调节靶基因的分子机制。强调了一个紧密的外胚层/中胚层交叉讲话以进行适当的运动,我们讨论了中枢神经系统和肌肉谱系规范之间的共同原理,以及HOX在神经肌肉电路中的新兴作用。
动脉粥样硬化性心血管疾病 (ASCVD) 仍然是全球最大的死亡原因 2 。血脂异常是与 ASCVD 发展有关的一个关键的可改变的因果风险因素。最近,G 蛋白偶联受体家族的成员 G 蛋白偶联受体 146 (GPR146) 被证明是血浆胆固醇的调节剂 3,4 。GPR146 在小鼠体内的肝脏抑制已显示出良好的特性,它对高胆固醇血症和动脉粥样硬化具有保护作用,这种作用独立于低密度脂蛋白受体 (LDLR) 通路 3 。为了更好地理解所涉及的生物学机制,我们开发了一种先进的基因工程人类诱导多能干细胞 (hiPSC) 模型,该模型因 GPR146 而无效。 GPR146 -/- 细胞系 (ITXi001-A-1) 源自我们实验室先前从尿液祖细胞 (ITXi001-A) 1 中重新编程的对照 hiPSC 的基因组版本。基因组版本使用 Alt-R™ CRISPR-Cas9 系统 (Integrated DNA Technologies) 进行,针对两个等位基因上的 GPR146 外显子 2。ITXi001-A-1 是通过挑选单个菌落建立的,其基因型通过 PCR 筛选 (图 1A - 上图和下图) 并通过 Sanger 测序确认 (图 1B)。我们进一步表明,GPR146 基因的遗传版本不会诱导基因组的脱靶版本(筛选 10 个预测位点 - (补充文件 3A)),也不会诱导 ITXi001-A-1 细胞的基因组完整性(分析 24 个拷贝数变异)(补充文件 1)。我们验证了 ITXi001-A-1 细胞不含支原体(补充文件 3B),并且它们与最初采集的尿液细胞来自同一个体(16 个 STR 的亲子鉴定 - 补充文件 2)。总体而言,ITXi001-A-1 细胞呈现:I- 与 ITXi001-A 细胞相比具有相似的形态(图 1C)II- 多能性标志物的阳性表达(通过 OCT3/4 和 TRA-1–60 的免疫荧光染色检测)(图 1D)。 III- 多能性细胞表面标志表达阳性(流式细胞术检测 SSEA-4 和 TRA1-60)(图 1E)。IV- 多能性标志物的表达水平与 ITXi001-A 细胞相同(NANOG、POU5F1 和 SOX2 - 通过 RT-qPCR 测量)(图 1F)。V- 具有优异的分化为中胚层、内胚层和外胚层的能力(通过 SOX17 和 FOXA2(中胚层);T(TBXT) 和 HAND1(内胚层)以及 PAX6 和 SOX1(外胚层)的 RT-qPCR 评估,与 ITXi001-A 细胞相似)(图 1G)。
子宫接受性对于胚胎植入和成功怀孕至关重要。由于子宫接受性受损而导致的植入失败是导致不孕的重要原因,但目前尚无检测方法可以识别子宫内膜引起的不孕症。在这项研究中,我们证明了在接受期,不孕女性的子宫上皮中 microRNA - 124 - 3p 异常升高。我们开发了两种模型:一种基因诱导的子宫上皮特异性 microRNA - 124 - 3p 过表达小鼠模型和一种三维人类胚胎滋养外胚层 - 子宫内膜细胞共培养模型。利用这些模型,我们发现小鼠和人类中升高的 microRNA - 124 - 3p 会破坏子宫内膜上皮细胞的粘附和极性,从而阻止子宫上皮过渡到接受状态。这项研究将 microRNA - 124 - 3p 确定为子宫内膜引起的不孕症的诊断和治疗靶点。
干细胞通过分化为其他类型的细胞的潜力来分类。胚胎干细胞是最有效的,因为它们必须成为体内的每种细胞。完整的分类包括:Totiptent-区分所有可能的单元格类型的能力。的例子是在卵受精时形成的合子,也是由合子分裂产生的前几个细胞。多能 - 分化为几乎所有细胞类型的能力(除了滋养细胞除外)。示例包括胚胎干细胞和细胞,这些细胞来自中胚层,内胚层和外胚层细菌层,这些细胞是在胚胎干细胞分化的开始阶段形成的。多功能 - 分化成紧密相关的细胞家族的能力。例子包括造血(成人)干细胞,这些干细胞可能成为红色和白细胞或血小板。[寡头 - 分化为几个细胞的能力。例子包括(成人)淋巴样或髓样干细胞。]一能力 - 仅产生自己类型的细胞的能力,但具有自我更新的特性,必须标记为干细胞。例子包括(成人)神经元干细胞。