注意:EZH1,增强Zeste同源物1。ezh2,增强Zeste同源物2。eed,胚胎外胚层的发育。suz12,zeste 12的抑制器。H3K27,赖氨酸的组蛋白H3 27。右 - 使用弹弓[Street等。Bolis等人的RNASEQ数据集上的 BMC基因组学(2018)。 nat Comm(2021),Yun等。 Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。BMC基因组学(2018)。nat Comm(2021),Yun等。Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。Oncotarget(2017),Liu等。nat Comm(2020)。PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。癌症Res(2007)]。癌症Res(2007)]。
耳穴疗法耳穴疗法是一种古老的技术,最初用于治疗背痛。20 世纪 40 年代,法国内科医生 Paul Nogier 博士重新发现了这项技术,他假设耳朵包含了头部朝下时身体的完整表现。图 1 展示了 Paul Nogier 在 1961 年提出的第一个表现形式。从胚胎学上讲,耳朵的外部在第五到六周才开始发育,由六个小丘组成,其中 1-3 个来自第一鳃弓,4-6 个(5 个未发育)来自第二鳃弓。每个小丘包含来自中胚层、外胚层和内胚层的细胞。四条脑神经(三叉神经 (V)、面神经 (VII)、舌咽神经 (IX)、迷走神经 (X))的突起分支和浅颈丛的分支支配耳朵。图 2 显示了耳朵的神经支配(1)。迷走神经用绿色标记,舌咽神经用红色标记,三叉神经用蓝色标记,耳大神经(颈浅丛的一个分支)用黄色标记。
过去十年,治疗遗传性疾病的创新理念急剧增加,而这些疾病目前尚无治愈方法。基因和蛋白质替代疗法是治疗这些疾病中的一组新方法,例如某些组织脆性病症。此外,干细胞方法的出现,例如诱导性多能干细胞 (iPSC) 技术,已导致开发出用于再生医学的替代组织的新方法。这与基因组编辑技术的发现不谋而合,该技术可以纠正致病突变。这些发现的最终结果表明,影响单个器官或组织的单基因疾病的新型创新疗法即将出现。然而,挑战仍然存在,尤其是对于在发育过程中同时影响多个组织和器官的疾病。这类疾病的例子包括外胚层发育不良,这是一种影响皮肤、角膜和上皮附属物等组织和器官发育的遗传性疾病。基因或蛋白质替代策略不太可能成功解决这些疾病的多器官表型。相反,我们认为更有效的方法是专注于纠正受累最严重的组织中的表型。这可能包括生成替代组织或识别纠正特定组织中疾病途径的药物化合物。
简介 成熟成人的肾上腺是重要的内分泌器官,由外皮质和中央髓质组成。肾上腺皮质有 3 层,可合成和释放关键的类固醇激素 (1-4)。盐皮质激素(例如醛固酮)由外球状带释放,是盐保留和维持血压所必需的。糖皮质激素(例如皮质醇)主要由束状带释放,是健康和血糖调节所必需的。弱雄激素(例如脱氢表雄酮)由内网状带释放,影响儿童中期的肾上腺功能初现,并可能对成年女性的健康产生影响 (5-7)。相比之下,中央肾上腺髓质起源于神经外胚层,释放肾上腺素 (adrenaline) 和去甲肾上腺素 (noradrenaline) (8)。因此,肾上腺在急性应激反应、生理稳态的许多方面以及长期健康中起着至关重要的作用。肾上腺功能紊乱(称为原发性肾上腺功能不全,PAI)会导致糖皮质激素功能不全,通常与盐皮质激素功能不全相结合 (9, 10)。PAI 可出现在不同年龄段,症状包括不适、体重减轻、色素沉着和低血压,并且可能
视网膜母细胞瘤 (Rb) 是由未成熟视网膜母细胞引起的原发性神经外胚层肿瘤,占儿童所有癌症的 3%。它是儿童最常见的眼内恶性肿瘤 [1]。该疾病通常表现为累及单眼或双眼的单灶性或多灶性肿瘤 [2]。目前,Rb 有许多有效的治疗方法,包括局部治疗(激光治疗、冷冻治疗和放射治疗)、全身化疗、创新的新型药物输送方法(玻璃体内和眼内化疗)以及眼球摘除术以防止眼外扩散和转移以及随后的死亡 [3]。复发性肿瘤的治疗取决于疾病的程度、肿瘤病灶的侧面性和数量(单灶、单侧、多灶)、肿瘤的大小和位置、有无玻璃体和视网膜下种植、儿童的年龄和一般健康状况以及之前的治疗。国际眼内视网膜母细胞瘤分类和眼内视网膜母细胞瘤分类系统是全球范围内主要的眼内 Rb 分类方法 [ 4 ](表 1)。由于肿瘤内异质性、化学耐药表型以及药物输送到眼部的障碍,Rb 仍然是一个主要的公共卫生问题
Annelid发育中的祖细胞:卵母细胞端粒细胞是Annelid胚胎中的大细胞,它们不对称地分裂以形成许多较小的爆炸细胞,然后将其增殖并分化为节段组织。这些细胞在Annelids的发展中起着至关重要的作用,在水ches和其他寡头中详细研究了细胞细胞。在第二轮后,五对卵母细胞是从d象限的大粒子中指定的。每对产生外胚层或中胚层组织,四对形成外胚层组织,一对形成中胚层组织。端粒具有两个不同的细胞质结构域:端质和叶片质。端质包含核,核糖体,线粒体和其他细胞器,而卵黄质主要由蛋黄血小板组成。在细胞分裂后,只有端质被传递到子干细胞上。O和P型蛋白细胞是从形成等效组的两个相同的前体中指定的。来自周围细胞的信号决定了雌胆母细胞的命运及其后代的命运,Q Bandlet与相邻的O/P Bandlet之间的相互作用引起了P命运。在某些物种中,例如helobdella triserialis,覆盖细胞的临时上皮在诱导命运中起作用。实验结果表明,在某些蠕虫中,O和p没有对等效组,而P谱系在其出生时从O/P Protelblast阶段开始。在水ech中,卵母细胞是引起爆炸细胞的细胞。在其他物种(例如helobdella ustensis)中,其他信号促进了P谱系分化,包括来自Q谱系细胞的骨形态蛋白分子信号传导。有四种类型的卵母细胞:N和Q,每个片段贡献了两个爆炸细胞; O,P和M,每个段覆盖一个分段边界的一个爆炸细胞。随着开发的进展,每个包含64个爆炸细胞的N和Q带子都滑过O,P和M带子,每个Bandlet都包含32个细胞。此动作允许在所有带子进入完整寄存器之前指定每个带子中的分段边界。卵母细胞负责产生水ech体的不同部分。N和Q型母细胞每段贡献两个爆炸细胞,一个用于前半部分,一个在后半部分。O,P和M型蛋白细胞贡献一个跨越节段边界的爆炸单元。水ches中的分割过程很复杂,涉及卵母细胞的运动和不同段的形成。对卵母细胞的研究为这组生物体的发展和进化机理提供了宝贵的见解。
内耳的发育需要从不同上皮,间质和神经元谱系中协调细胞类型。尽管我们从动物模型中学到了很多东西,但有关人内耳发育的许多细节仍然难以捉摸。我们最近在3D培养中使用多能干细胞开发了一种人体内耳有机发生的体外模型,从而促进了包括毛细胞和神经元在内的感官电路的生长。尽管以前表征了某些细胞类型,但许多细胞仍然不确定。本研究旨在绘制内耳手机体的体外开发时间表,以了解发挥作用的机制。在分化的前36天,我们在十个阶段使用单细胞RNA测序,我们跟踪了暴露于特定信号调节剂后从多能性到各种耳细胞类型的演变。我们的发现展示了影响分化的基因表达,鉴定出大量的外胚层和间质细胞类型。我们还辨别了类器官模型的各个方面与体内发育一致,同时突出了潜在的差异。我们的研究建立了内耳的器官发育地图集(IODA),为人类生物学提供了更深入的见解并改善了内耳组织的分化。
图 1 对所研究的七种肿瘤类型的 ErbB 家族成员基因扩增和蛋白质表达进行研究。(A)HER2 /CEP17 比率的分布。使用 DDISH 确定儿童肿瘤样本 (n = 297) 中的 HER2 扩增。如果 HER2 /CEP17 比率 ≥ 2,则 HER2 DDISH 状态定义为阳性。(B)H 分值分布,代表 EGFR、HER2、HER3 和 HER4 的表达。通过 IHC 确定 EGFR、HER2、HER3 和 HER4 的表达。七种肿瘤类型的表达均以 H 分值表示。CEP17,17 号染色体的着丝粒探针;DDISH,双半抗原原位杂交;DIPG,弥漫性内在性脑桥神经胶质瘤;EGFR,表皮生长因子受体;EP,室管膜瘤;HGG,高级别神经胶质瘤; H 评分、Hirsch 评分;HER、人类表皮生长因子;HER2、HER 受体 2;HER3、HER 受体 3;HER4、HER 受体 4;IHC、免疫组织化学;MB/PNET、髓母细胞瘤/原始神经外胚层肿瘤;NB、神经母细胞瘤;RLGA、复发性低级别星形细胞瘤;RMS、横纹肌肉瘤
导航线索 netrin- 1 因其在癌症发展中的关键作用而广为人知,是目前正在临床研究的一个有希望的治疗靶点。针对 netrin- 1 的人源化单克隆抗体 NP 137 正在进行第 1 期和第 2 期临床试验。有趣的是,netrin- 1 中 NP 137 识别的表位与 netrin- 3 中的对应表位有 90% 的同源性,netrin- 3 是人类中与 netrin- 1 最接近的成员,但在癌症领域对此知之甚少。在这里,我们发现 netrin- 3 似乎在人类神经母细胞瘤 (NB) 和小细胞肺癌 (SCLC) 中特异性表达,这是神经外胚层/神经内分泌谱系的两种亚型。netrin- 3 和 netrin- 1 的表达是互相排斥的,前者由 NB 中的 MYCN 致癌基因驱动, Netrin- 3 表达与 NB 的疾病阶段、侵袭性和总体生存率相关。从机制上讲,我们证实了 Netrin- 3 对 Netrin- 1 受体的高亲和力,并证明了使用 NP 137 进行 Netrin- 3 基因沉默或干扰,可延迟肿瘤植入并减少动物模型中的肿瘤生长。总之,这些数据支持在 NB 和 SCLC 中靶向 Netrin- 3。
lissencephaly是欧文在1868年首次描述的[1]。这是一种皮质发育畸形,是由异常的神经元位移引起的,它导致皮质增厚和白质变薄,并减少回旋。神经元从发育中的中枢神经系统的祖细胞区域迁移,以形成皮质区域内的复杂层,这代表了一个重要但尚不完全理解的脑发育的特征[2]。胎儿中枢神经系统的发展包括神经外胚层发育(3 * 4周妊娠),前脑发育(8 * 12周的妊娠期),神经元增殖(12 * 16周妊娠),神经元迁移(12 * 20周妊娠),妊娠12周,妊娠期和组织(20周的遗传和组织)(20周的范围(20周盖斯特对生育),33-33-33-3-3-33。神经元迁移受严格的遗传程序,精确的时间和空间调节的控制,研究发现,在怀孕期间,许多有害因素,例如辐射,感染和代谢异常可能导致神经元迁移障碍[7,8]。遗传测试可能为阴性。除了外部因素外,特定的遗传突变也是神经元迁移障碍的重要原因,例如PAFAH1B1 [9]和DCX基因缺陷[7,8],异常
