摘要:底栖海洋生物利用一系列防御和攻击机制来影响在坚硬的海洋基质上对空间的竞争。石珊瑚的清扫触手是竞争中使用的可诱导攻击性器官,但它们也可能起到先发制人的防御功能。红海北部埃拉特的脑珊瑚 Platygyra daedalea 中约有一半群落拥有清扫触手,其中许多并不朝向邻近的珊瑚。这些随机方向的清扫触手可能是为了探测距离群落 >5 厘米处珊瑚的定居或前进。在距离 P. daedalea <5 厘米的珊瑚群落中,约 43% 的珊瑚群落朝向相互作用区域出现组织损伤。受损最严重的邻近珊瑚属于 Favites 和 Leptastrea 属,而 Millepora 和同属 Platygyra 群落的受损程度明显较小。随着与 P. daedalea 距离的增加,邻近珊瑚群落的组织损伤显著减少。脑珊瑚上清扫触手的存在与群落直径显著相关,但与邻近群落的数量无关。埃拉特的 P. daedalea 攻击性触手长度为 5.3 ± 3.0 厘米,比之前报道的该属成员的长度要长。在实验室条件下,在与常见的块状珊瑚 F. complanata 群落初次接触后约 30 天,P. daedalea 群落上会长出清扫触手,在约 50 天时它们的长度达到最大,约为 6.5 厘米,比进食触手长 10 倍。在 2 个月内,清扫触手对 F. complanata 群落造成的组织损伤不断增加。在形态发生过程中,触手的尖端与柄部的比例和外胚层厚度会加倍,表明顶球发育,但触手柄的最大宽度不会改变。扫触手似乎是石珊瑚中常见的一种对抗机制,也可能是一种防御机制,使一些物种能够在拥挤的珊瑚礁栖息地中存活下来。
抽象的胃结构是胚胎发育的关键过程,是形成三线蛋白圆盘所必需的。这是囊泡细胞的分化和重新分布,形成三个胚胎层,这些胚胎将产生不同的功能组织(外胚层,中胚层和内胚层)。这种重组是通过涉及整个胚胎的特定细胞组的高度协调运动而发生的。Telest Medaka(Oryzias latipes)被选为实验动物模型。在该物种中,胃结构与Epibolia工艺同时发生。在此期间,细胞从动物极向植物极迁移,导致胚胎轴的形成,这是建立脊椎动物身体计划的基础。对表皮过程中发生的形态发生过程知之甚少。但是,与YAP家族成员一样,已经描述了某些要素的重要性。这些蛋白质是转录调节剂,从培养基接收信号和机械刺激,并将它们与遗传信号整合在一起。这是细胞正确迁移到胚胎中线的必要条件。如果这些信号受到放松管制,则可能无法正确发展胃,甚至可能会产生致命的影响。要更多地了解YAP在胃肠道中的作用,我们将研究YAP下游基因的参与(AFAP12,AKAP12B,EFS,EFS,GLIS2B,MARCKSL1A/B,ROCK2B,Synaptopodin和ved),在cytoskelet cytoskelectal重新组织中与细胞粘附和互动的互动过程中。为此,CRISPR-CAS9系统用于生成每个基因的敲除突变体。这种基因组编辑机制是一种根据细菌和古细菌的天然适应性免疫防御系统而适应的工具。该工具由两个组成部分组成:SGRNA,与基因组的靶序列相匹配的短片段和Cas9核酸内切酶,它们在同一位置引起双链DNA断裂。之后,细胞修复DNA的影响区域,导致基因组中的永久修饰。要执行数据分析,我们使用Stata统计软件。初步数据显示了AFAP12,MARCKSL1,VED和ROCK2B的研究中的特殊结果。在这些情况下,控制和敲除之间的表观进展似乎有所不同。
<神圣的心脏发育始于当基本发芽的叶片,中胚层和内胚层形成时,在多种细胞类型的形态发生过程中,形成了中胚层和内胚层。一个复杂而协调的细胞间信号网络可引起大规模的织物迁移和内在化过程,以获得脊椎动物胚胎的基础方案。<将源自中胚层细胞的前体衍生而成的前体在开发的第十三至第十五天之间,将双侧胚胎的前端解释并合并为两个种群。一组调节发育和跟踪因素的基因指导并保留这些细胞元素作为心脏前体。心脏转录因子以合作和分层模式运行,以诱导合适的结构蛋白作为心肌细胞和离子通道的特定收缩系统的组成部分。许多心脏转录因子不仅是出于心脏前体朝特定形式的意图进行干预,而且在心脏形态发生的后续方面,例如建立各个房间的身份,室内天气对准和传导系统的发展。因此,心脏转录因子的足够空间和雷暴功能决定了健康和功能性心脏的发展。对正确的基因调节的需求是用与心脏转录因子突变相关或引起的许多先天性心脏缺陷来体现的。根据转录因子的不同亚组的表达,在胚胎发育的早期阶段,心脏的前体细胞的库被分为两个不同的祖细胞。第一个称为主要心脏场,将形成心脏管(线性),原始心脏草图,这将产生左心室和大多数心房织物。第二个心脏场,在发育的各个阶段,都符合右心室的形成和污水的特征。发育心脏从神经心脏峰和间皮获得进一步的贡献。神经心脏顶由外胚层细胞组成,这些细胞通过中间线的Actoderma神经驯化而从神经斑块的侧缘到达心脏场。神经心脏波峰迁移到形成心脏的区域,在该区域有助于动脉和肺部血管流出的障碍。间皮是产生心外膜的胚胎细胞来源,表达是一种扮演心脏内部表面并在一系列过程中起作用的上皮,例如冠状动脉系统的发展和纤维无菌的形成。
全基因组关联研究已发现许多与复杂疾病相关的常见和罕见种系遗传变异,包括单核苷酸多态性 (SNP)、拷贝数变异 (CNV) 和其他组成结构变异。然而,很大一部分疾病易感性仍无法解释,通常称为缺失遗传性。一个越来越受关注的领域是受精后出现的遗传变异,称为嵌合体突变,发生在细胞分裂过程中。携带有害突变的细胞可能通过修复机制、细胞凋亡或免疫监视被消除,而其他细胞可以将其突变传递给子细胞。因此,在早期胚胎发育过程中,每次细胞分裂都会保留一个或多个合子后突变。随着发育的进展,这些突变不断积累,导致细胞间基因组景观多样化。因此,大多数细胞最终携带独特的基因组。虽然许多嵌合体突变可能是中性的,但某些突变可能是致病的。嵌合体可发生在体细胞和生殖细胞中,体细胞嵌合体最近因其在神经遗传疾病中的潜在作用而受到关注。合子后突变涵盖所有主要的突变类型,包括染色体非整倍体、大规模结构异常、CNV、小插入/缺失和单核苷酸变异。其中,嵌合性染色体改变,也称为体细胞CNV(sCNV),通常是由于胚胎发生过程中的染色体不稳定性造成的。这些突变主要发生在合子后或胚胎发育早期,偶尔由合子后对减数分裂错误的部分挽救而引起,导致细胞亚群携带这些突变。值得注意的是,sCNV 在人类神经元中大量存在(1)。大脑主要从外胚层发育而来,而血细胞起源于中胚层。细胞比例高的体细胞突变更有可能发生在发育早期。如果这些突变出现得足够早,例如在原肠胚形成期间或之前,它们可能同时存在于脑细胞和血细胞中。随着个体年龄的增长,克隆性造血会导致血细胞中积累大量高细胞分数体细胞突变,而这些突变可能不存在于其他组织中。因此,分析年轻个体血液的基因组数据可以识别与大脑共有的体细胞突变,为了解脑部疾病的遗传易感性提供有价值的见解(图 1)。目前至少有 8 个实验平台可用于检测 sCNV。表 1 比较了这些分子检测的分辨率、优点和缺点。其中,
从HIV-1 + 2,乙型肝炎和丙型肝炎中分离出外周血单核细胞(PBMC)。pBMC,包括人类基因Oct3/4,Sox2,c-Myc和klf4的矢量。HIPSC线BIHI292-A源自单个菌落,并在E8培养基中保持未分化的HIPSC的典型形态(图1 a)。通过PCR确认缺乏仙台病毒载体(Suppl。图1 a)。BIHI292-A HIPSCS ECT3/4,SSEA-4,NANOG和TRA-1 - 60作为未分化HIPSC状态的典型标记,如使用免疫细胞化学所示(图1 b)。进一步的流式细胞仪证实了OCT3/4,SSEA-4,NANOG和TRA-1-60表达在超过96%的BIHI292-A HIPSC中的SSEA-4,Nanog和Tra-1-60表达中的干性标记表达(图。1 c)。g带核分型在GTG上进行(使用GIEMSA的胰蛋白酶G带)进行染色的中期染色体,并揭示了正常的雌性Karyo 46型,XX(图1 D)。 单核苷酸多态性分析表明,与患者的PBMC相比,BIHI292-A HIPSC线没有任何拷贝数变量> 2 Mb> 2 MB> 5 MB(表1)。 短串联重复(STR)分析的结果表明,BIHI292-A细胞系和患者的PBMC的遗传认同是相同的(表1)。 Sanger测序证实了两个Exon 2中的两个Trem2杂合突变C.313del(P.Ala105fs)和C.199del(p。is67fs)(图) 1 e)。 图1 D)。单核苷酸多态性分析表明,与患者的PBMC相比,BIHI292-A HIPSC线没有任何拷贝数变量> 2 Mb> 2 MB> 5 MB(表1)。短串联重复(STR)分析的结果表明,BIHI292-A细胞系和患者的PBMC的遗传认同是相同的(表1)。Sanger测序证实了两个Exon 2中的两个Trem2杂合突变C.313del(P.Ala105fs)和C.199del(p。is67fs)(图1 e)。图为了确认患者突变的存在(Buthut等,2023),在TREM2基因的外显子2中为复合杂合突变进行了BIHI292-A HIPSC的测序。通过将分化为三个细菌层的细胞进行分化,测试了多能分化势。分化测试证实,BIHI292-A HIPSC具有分化为内胚层(CD184 +,SOX17 +),Meso Dermal(CD140B +,CD144 +)和外胚层(PAX-6 +,SOX2 +)细胞的潜力(1 f)。BIHI292-A HIPSC对支原体进行了阴性测试(Suppl。1 b)。
现在将癫痫概念化为网络中断:局灶性癫痫被认为在发作的半球有网络改变,而全身性癫痫被认为有双半球网络变化。越来越多的人将许多癫痫也视为神经发育障碍,大脑早期变化是癫痫生物学的基础。面部结构的发育受到表面外胚层与底层发育中的前脑和神经嵴细胞之间复杂分子相互作用的影响。鉴于人类面部生长会随时间发生变化的证据,这种影响可能会持续到出生后,直到至少 18 岁。在这项病例对照研究中,我们假设与全身性癫痫患者或无癫痫的对照组相比,侧向局灶性癫痫(即单侧网络变化)患者的面部不对称程度更高。我们应用三维立体摄影测量法和密集表面模型来评估癫痫患者的面部不对称,旨在生成探索癫痫病理生理机制的新工具。我们分析了神经影像数据来探索面部不对称和大脑不对称之间的相关性。我们连续招募了 859 名在三级转诊中心的癫痫诊所就诊的癫痫患者。我们使用全脸密集表面建模和三维面部照片的特征分析来分析 378 例病例和 205 例健康对照者之间的面部差异。234 例病例在拍摄面部照片时可以获得神经影像。我们计算了对侧区域之间的大脑不对称指数。与对照组相比,患有单侧病变的局灶性症状性癫痫的病例表现出更严重的面部不对称(P = 0.0001,双样本 t 检验)。在控制年龄和性别后,线性回归分析证实了这一结果。我们还发现病程与大脑总平均皮质厚度不对称指数有显著相关性(r=0.19,P=0.0075),但与总平均表面积无显著相关性(r=0.06,P=0.3968)。面部不对称与区域皮质厚度或表面积不对称之间没有显著相关性。我们认为,单侧异常引起的局灶性癫痫病例面部不对称程度较大可能是用早期单侧网络中断来解释的,而这与潜在的大脑不对称无关。三维立体摄影测量和密集表面建模是癫痫的一种新型、强大的表型分析工具,可以更好地了解癫痫的病理生理学,并进一步深入了解癫痫背后的大脑网络的发展以及面部和神经发育的遗传学。
我实验室的研究目的是从分子层面深入了解人类早期发育是如何控制的。尽管调节人类发育早期细胞谱系决定的机制具有根本的生物学重要性,并且对理解不孕症、流产、发育障碍和干细胞的治疗应用具有广泛的临床意义,但人们对其了解甚少。我的实验室率先研究了调节人类植入前胚胎发育的基因的功能。在这五年间,我们发现了人类胚胎发生中第一个谱系决定的潜在机制;发现了小鼠胚胎中没有的人类胚胎特有的基因调控网络;并确定了在哺乳动物中进化保守的机制。这些发现证实了直接研究人类胚胎的必要性。通过整合从人类囊胚转录组分析中获得的信号传导见解,我们定义了更接近胚胎生态位的人类胚胎干细胞培养条件。我们获得的知识基础将有助于进一步改进体外模型,以更好地了解人类生物学。此外,通过应用从解剖发育胚胎中的分子程序中获得的知识,我们已经确定了介导细胞命运从多能胚胎干细胞 (ESC) 转变为卵黄囊或胎盘祖细胞的信号通路和转录因子。我们已经证明这些细胞模型是分子遗传分析的可处理系统,并且在未来预计它们将有助于了解卵黄囊或胎盘疾病。我们的实验室为设计优化的早期植入模型做出了贡献,该模型揭示了在没有母体组织的情况下一定程度的自组织。我们还生成了大量临床前数据,这些数据是支持英国法律改变的证据的一部分,该法律规范了线粒体替代疗法,这是一种预防致命遗传性线粒体疾病的新型生殖技术。总之,我们在早期人类发育方面的专业知识已在国际上享有盛誉。未来计划:我们未来的计划是改变我们对控制早期人类发育的分子机制的理解。我们力图揭示人类胚胎外胚层细胞何时以及如何建立和维持,并了解在胚胎发生过程中将这些多能细胞与胚胎外细胞区分开来的分子机制。我们将进一步开发开创性方法,利用 CRISPR-Cas9 介导的基因组编辑、TRIM-Away 蛋白质消耗、组成性活性和激酶失活的蛋白质变体以及小分子抑制剂和激活剂来研究人类胚胎发生过程中的基因功能。这些方法将使我们能够直接测试参与 Hippo 和 TGFβ 信号传导的基因的功能,以及这些途径下游的关键转录因子,我们假设它们分别参与了第一次和第二次细胞命运决定。总之,我们期望该项目能够显著推进我们对塑造早期人类胚胎发生的分子程序的理解,并有可能提供基本见解并推动临床转化。
自 1961 年首次发现骨髓来源的多能干细胞以来,干细胞研究取得了长足进步 [ 1 ]。干细胞是一种独特的细胞,能够通过有丝分裂不断复制,从而形成更多的细胞。该过程会产生两种不同的细胞类型:一种会进化为特定细胞类型,另一种则保留自我更新的能力 [ 2 ]。干细胞大致可分为三类:诱导多能干细胞 (iPSC)、胚胎干细胞 (ESC) 和成体干细胞 (ASC) [ 3 ]。由于 iPSC 和 ESC 能够转化为三个胚层:外胚层、中胚层和内胚层,因此它们被归类为多能干细胞 (PSC)。2006 年,Kazutoshi Takahashi 和 Shinya Yamanaka 通过使用病毒载体引入 Oct4、Sox2、Klf4 和 c-Myc 等特定转录因子,成功将小鼠体细胞转化为 iPSC [ 4 ]。此后,人们使用各种方法将不同类型的小鼠和人类体细胞重新编程为 iPSC [ 5 ]。这种重新编程人类细胞的创新方法引起了科学和医学领域的极大兴趣。iPSC 作为多能细胞来源,为人类 ESC 提供了一种替代方案。诱导多能干细胞的一个显著优势是它们来源于可以非侵入性获得的体细胞。这些细胞携带个体的遗传特征,可以降低免疫排斥的风险 [ 6 ]。现代医学领域对基于 iPSC 的疗法的关注度正在提高。它们在疾病建模、药物筛选和再生医学中的应用正在呈指数级增长 [ 7 ]。iPSC 因其自我更新能力和分化为所有人体细胞类型的能力而在疾病建模中发挥着关键作用。这使得它们成为创建各种疾病模型以供研究的理想选择 [ 8 – 10 ]。患者特异性 iPSC 在制定有针对性的治疗策略和药物开发方面特别有价值。此外,来自正常细胞和患病细胞的 iPSC 可以分化为神经元、肝细胞、心肌细胞等,以评估毒性和副作用,这是治疗分子开发的关键因素 [11]。在再生医学中,iPSC 用于修复或再生受损或退化的组织。这是通过在实验室中从 iPSC 创建器官组织并将其移植到受伤区域来实现的。这种疗法有望用于治疗造血系统疾病、肌肉骨骼损伤、脊髓损伤和肝损伤等疾病 [ 12 – 14 ]。已经开发出各种用于创建 iPSC 的技术,例如使用逆转录病毒或慢病毒进行基因转导和化学诱导。然而,生成 iPSC 的过程通常很慢且效率不高,啮齿动物细胞需要大约 1-2 周,人类细胞需要 3-4 周,成功率通常较低。此外,通过检查菌落形态来评估 iPSC 的质量容易出现人为错误,这是一个重大挑战,在进行进一步的实验或治疗用途之前必须解决这一问题。尽管在提高 iPSC 培养的效率和速度方面取得了进展,但该过程仍然耗费资源,因此需要开发自动化系统以最大限度地减少错误并增强 iPSC 分析。最近,人工智能 (AI) 技术,包括机器学习 (ML) 和深度学习 (DL),已被用于增强再生疗法。这些 AI 驱动方法的实施可以改进
使用小鼠ICM胚胎Beatrice F. Tan 1,Olivier J.M.Schäffers1,2,Sarra Merzouk 1,Eric M. Bindels 3,Danny Huylebroeck 4,Joost Gribnau 1,4,CathérineDupont1,†, * 1 1 1 1, * 1 1, * 1,荷兰鹿特丹,伊拉斯mus大学医学中心,伊拉斯特大学医学中心。2荷兰鹿特丹伊拉斯mus大学医学中心妇产科和胎儿医学系。3荷兰鹿特丹伊拉斯mus大学医学中心血液学系。4荷兰鹿特丹伊拉斯mus大学医学中心的细胞生物学系。†最后一位作者。*通讯作者:c.dupont@erasmusmc.nl。抽象的基于干细胞的胚胎模型是研究早期胚胎发生的有希望的替代方法。我们介绍了两个不同的模型,以复制小鼠胚胎发育过程中胚胎内胚层和epiblast之间的动力学。诱导性GATA6(I GATA6)胚胎体(EB),仅源自I GATA6胚胎干细胞(ES)细胞,对于对原始内胚层的位置依赖性发展进行建模非常有价值。内部细胞质量(ICM)胚胎,相反,通过汇总“野生型”和i GATA6 ES细胞形成,准确,以可比的PACE模拟在E7.5到E7.5的体内发育中的相当PACE模拟。值得注意的是,ICM胚胎模型细胞分类,并通过玫瑰花结状阶段,将层级从幼稚到启动多能的过渡。此外,在该模型中缺乏胚胎外胚层样细胞,将表皮和内脏内胚层引导到前发育的命运。因此,I GATA6 EB和ICM胚胎是在小鼠早期胚胎发育过程中对细胞命运决策的理解的强大工具。引言小鼠的植入前发育标志着两个细胞命运决策,每种都会导致谱系隔离[1]。在胚泡中,第一个隔离发生在胚胎第3-3.5(e3-e3.5)的情况下,并形成了滋养型剂(TE)和内部细胞质量(ICM)。随后在ICM中随后发生了第二个隔离,并形成了原始内胚层(PRE,低纤维细胞)和层细胞。在第二个决策中运行的机制涉及位置效应,细胞分选和凋亡。随着发育的进展,PRE不仅形成顶叶内胚层,还会产生内脏内胚层(VE),当后者从幼稚到启动的多能状态过渡时,围绕着层状的内胚层(VE)。pre/ve与层细胞之间的细胞间通信以及对其的相互解释调节了这两个谱系中每一个的发展。然而,沿子宫中小鼠小鼠胚胎的差可及性,了解胚胎发生的这些阶段的参与者和基因调节网络的变化受到了复杂,重叠和冗余的分子机制的阻碍。基于干细胞的胚胎模型已成为研究哺乳动物胚胎早期发育的有吸引力的替代方法,但并非没有局限性。类囊体的发育潜力较差,因为它们的PRE(E3.5-E4)的形成仍然很困难,并且取决于各种培养添加剂[2,11]。小鼠整合性胚胎模型,例如胚胎[2-4]和ETX胚胎[5-10],它们分别模拟了植入前和植入后发育,无法准确复制E3-E5.5之间的体内发育阶段。ETX胚胎在发育的特定阶段仍处于装配模式,因此对于从E5.5开始建模和研究胚胎发生最有用。此外,在这两个综合胚胎模型中达到高效率都构成了重要的
我们感谢Ben Humphreys,Gaya Amarasinghe,Daisy Leung和Ting Wang的评论和建议,Robert Fulton,Catrina Fronick,Paul Cliften提供了技术帮助。这项工作得到了Siteman Cancer Center的共享资源投资计划的部分支持。
