Rajwant Sidhu,博士; DDI,CORP。摘要:IPC 6012B表3-2中指定的铜包装板是为了提高PCB的可靠性,该铜板是针对PCB的可靠性,该可靠性是通过需要平面化和表面上限的VIA结构设计的。 PCB在没有包裹板的情况下构建的PCB更容易容易出现与枪管铜与表面铜的互连之间的分离相关的故障。 可靠性的提高是铜包裹厚度的函数,该曲线厚度支持IPC II类和III类程序的差异。 一般规则是“包装板越厚,可靠性越好”。铜厚度的增加,与包装板相关,但是与PCB制造商生产具有高密度和精细特征的产品的能力。 制造精美特征的一般规则是“铜越少,制造性越好。” DDI Corp开发的技术。 称为Flat-wrap™提供的铜包装溶液不需要在填充板孔的外表面上积聚铜。 这可以提高可靠性,而无需牺牲具有高密度和/或精细功能的设计能力。 这项技术在过程中也有助于非破坏性铜厚度测量,并确保整个板表面的铜包裹厚度的一致性。 在这项技术中,填充板孔的外表面铜厚度将控制铜包裹厚度。 在需要多个铜包装的印刷电路板设计中,该技术的好处更为明显。Rajwant Sidhu,博士; DDI,CORP。摘要:IPC 6012B表3-2中指定的铜包装板是为了提高PCB的可靠性,该铜板是针对PCB的可靠性,该可靠性是通过需要平面化和表面上限的VIA结构设计的。PCB在没有包裹板的情况下构建的PCB更容易容易出现与枪管铜与表面铜的互连之间的分离相关的故障。可靠性的提高是铜包裹厚度的函数,该曲线厚度支持IPC II类和III类程序的差异。一般规则是“包装板越厚,可靠性越好”。铜厚度的增加,与包装板相关,但是与PCB制造商生产具有高密度和精细特征的产品的能力。制造精美特征的一般规则是“铜越少,制造性越好。” DDI Corp开发的技术。称为Flat-wrap™提供的铜包装溶液不需要在填充板孔的外表面上积聚铜。这可以提高可靠性,而无需牺牲具有高密度和/或精细功能的设计能力。这项技术在过程中也有助于非破坏性铜厚度测量,并确保整个板表面的铜包裹厚度的一致性。在这项技术中,填充板孔的外表面铜厚度将控制铜包裹厚度。在需要多个铜包装的印刷电路板设计中,该技术的好处更为明显。本文探讨了铜包板的当前过程问题,并讨论了新技术在制造和可靠性方面提供的好处。简介:多层PCB生产是一种不断发展的,越来越复杂的处理技术,客户需求,设计规则和产品规格。将多次添加新的过程以满足某些需求,但并不容易并完全集成到现有过程网络中。总是有一个更好的方法来改善和简化制造过程。IPC在IPC 6012B规格中添加了铜包板的需求,需要从填充的板孔中镀有铜板才能继续围绕孔的膝盖围绕并表面上。引入了此要求,以提高由于表面特征/盖和板孔壁之间的分离而导致故障的可靠性。由于铜包装板而引起的表面铜厚度增加给制造商制造和设计人员设计PCB的挑战带来了额外的挑战。本文重点介绍了处理IPC 6012B中指定的铜包装要求的当前问题以及称为Flat-Wrap™的新技术的好处。IPC 6012包装镀金规范:IPC-6012B指定铜包装板应从填充的板孔连续到板条结构的外表面,并至少延伸至至少25微米(984微英寸),其中需要一个环形环。图1显示了此要求。图2显示,通过加工(打磨,蚀刻,平面化等)的任何减少包装板的减少。不允许导致包装不足。IPC-6012B表3-2给出了铜包裹厚度的要求。2类设计的连续最小包裹要求为0.000197“,对于3类设计为0.000472”。
执行摘要 美国空军飞机事故调查 F-35A,T/N 12-5052 爱达荷州芒廷霍姆空军基地 2016 年 9 月 23 日 2016 年 9 月 23 日,当地时间约 08:52,事故飞机 (MA) 是一架 F-35A,尾号 12-5052,隶属于亚利桑那州卢克空军基地 (AFB) 第 56 战斗机联队第 61 战斗机中队,但暂时驻扎在爱达荷州芒廷霍姆空军基地,在发动机启动过程中发生不可控的发动机起火。MA 中止启动,事故飞行员 (MP) 安全逃离了仍在燃烧的飞机。维修人员迅速采取行动,扑灭了大火。MA 后部的三分之二遭受了严重的火灾损坏。虽然此次事故造成的总损失尚未确定,但 MA 的损失估计超过 17,000,000 美元。事故调查委员会 (AIB) 主席根据大量证据发现,事故原因是发动机启动时的顺风。顺风将热空气吹入集成动力组的进气口,导致一系列事件,导致启动时施加到 MA 发动机的扭矩不足,从而导致发动机转速减慢。与此同时,燃料继续以越来越快的速度供应给发动机,导致发动机起火。火从发动机排气管中冒出,并被顺风吹向 MA 的外表面,造成严重损坏。在最初看到火灾迹象后约 20 秒,火势被扑灭。
Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
摘要目的:分化的人类簇(CD)300A,一种具有免疫受体酪氨酸抑制序列的I型跨膜蛋白,被研究为靶向血液学恶性肿瘤(HMS)的人类天然杀伤(NK)细胞的潜在免疫检查点。方法:我们实施了一个涉及CD300A配体磷脂酰丝氨酸(PS)的刺激系统,暴露于恶性细胞的外表面。此外,我们利用CD300A过表达,CD300A阻止系统和异种移植模型来评估CD300A对NK细胞在体外和体内环境中对HMS的影响。此外,我们探索了患者CD300A与HM进展之间的关联。结果:我们的发现表明PS会阻碍NK细胞的功能。增加的CD300A表达抑制了NK细胞的HM裂解。CD300A的过表达通过损害移植的NK细胞来缩短HM-XENORGARGED小鼠的存活。用抗体阻断PS – CD300A信号显着放大了NK细胞中裂解功能相关蛋白和效应细胞因子的表达,从而增强了裂解HMS的能力。在临床上,CD300A表达的增强与HMS或实体瘤患者的肿瘤内NK细胞的“疲劳”表型相关。结论:这些结果提出了CD300A作为对HMS基于NK细胞的治疗的潜在目标。关键字NK单元格; CD300A;磷脂酰丝氨酸;免疫检查点;血液系统恶性肿瘤
4.1 总体维护检验 ................................................................................................................................ 4-2 4.1.1 术语 ...................................................................................................................................... 4-2 4.1.2 资质要求 ................................................................................................................................ 4-5 4.2 飞行前检查 ...................................................................................................................................... 4-7 4.3 飞行后检查 ...................................................................................................................................... 4-8 4.4 定期检查 ...................................................................................................................................... 4-8 4.4.1 定期检查间隔 ............................................................................................................................. 4-8 4.4.2 定期检查措施 ............................................................................................................................. 4-8 4.4.3 定期检查清单 ............................................................................................................................. 4-9 4.5 液体 ............................................................................................................................................. 4-16 4.5.1 发动机4.5.2 冷却液................................................................................................................................ 4-19 4.5.3 制动液................................................................................................................................... 4-20 4.5.4 燃油................................................................................................................................... 4-22 4.6 润滑............................................................................................................................................. 4-24 4.6.1 润滑基础知识....................................................................................................................... 4-24 4.6.2 推荐润滑剂.................................................................................................................... 4-24 4.7 机械装置调整............................................................................................................................. 4-26 4.7.1 扭矩............................................................................................................................. 4-26 4.8 必要的维护工具..................................................................................................................... 4-27 4.9 接入孔 ...................................................................................................................................... 4-27 4.10 刹车系统效率调整 ...................................................................................................................... 4-28 4.10.1 刹车片更换 ...................................................................................................................... 4-28 4.10.2 放气 ...................................................................................................................................... 4-29 4.11 控制面偏转设置 ...................................................................................................................... 4-30 4.11.1 副翼偏转调整 ...................................................................................................................... 4-30 4.11.2 襟翼偏转调整 ...................................................................................................................... 4-30 4.11.3 升降舵偏转调整 ...................................................................................................................... 4-31 4.11.4 方向舵偏转调整 ................................................................................................................ 4-31 4.11.5 调整配平片 ...................................................................................................................... 4-31 4.12 可转向前轮起落架调整 .............................................................................................................. 4-32 4.12.1 更换橡胶减震器 ...................................................................................................................... 4-32 4.13 发动机怠速调整 ............................................................................................................................. 4-33 4.14 轮胎充气压力 ............................................................................................................................. 4-34 4.15 清洁和保养 ............................................................................................................................. 4-35 4.15.1 飞机保养概述 ............................................................................................................................. 4-35 4.15.2 外表面清洁 ............................................................................................................................. 4-35 4.15.3 内部清洁 ............................................................................................................................. 4-35 4.15.4 驾驶舱机舱盖清洁 ................................................................................................................ 4-35 4.15.5 发动机维护 .............................................................................................................. 4-36 4.15.6 螺旋桨维护 ................................................................................................................................ 4-36 4.15.7 冬季运行.................................................................................................................... 4-37
骨形成是一个复杂的过程,涉及许多不同细胞类型的协调活性,包括成骨细胞和骨细胞。骨膜是结缔组织的致密膜,覆盖骨骼外表面,对于骨组织的生长,修复和维持至关重要。本研究的目的是总结骨膜从青春期到成年和老年的骨骼形成的贡献。这是使用PubMed电子互联网数据库的叙事文献综述。搜索基于关键字“骨膜骨形成”。纳入标准是临床前或临床研究,评估了骨膜在骨形成中的作用。非英语研究被排除在外。原始搜索提供了126篇发表论文。在包含和排除标准之后,我们终于接受了20篇文章以进行当前的审查。检查了纳入研究的参考列表后,添加了14项研究,留下34项研究进行本综述。在整个寿命中,骨膜骨形成发生动态变化。在青春期,骨膜具有高度成骨,并积极地有助于骨骼的快速生长。成年后,它在维持骨强度和适应机械载荷方面起着作用。在成年期,骨膜继续提供骨基细胞的来源,这有助于骨骼重塑和修复的持续过程。在更高级的年龄中,骨膜对激素和细胞因子的反应在骨形成方面降低;但是,可以保留骨膜细胞的成骨分化的能力。
本NASA技术手册由国家航空航天局(NASA)出版,作为提供工程信息的指导文件;经验教训;解决技术问题的可能选择;类似项目,材料或过程的分类;解释性方向和技术;以及任何其他类型的指导信息,可以帮助政府或其承包商在设计,构建,选择,管理,支持或操作中的系统,产品,流程或服务。本NASA技术手册适用于NASA总部和NASA中心,包括组件设施以及技术和服务支持中心。它也可能适用于喷气推进实验室(联邦资助的研究与发展中心),其他承包商,赠款的接收者,合作协议或其他协议,仅在适用的合同,赠款或协议中指定的范围内。本NASA技术手册为跨NASA计划的一致实践建立了一个共同的框架。其内容同样适用于任何航天器。它的开发是为了解决与内部航天器组件的机上收费以及与太空等离子体和高能电子有关的外表面以及该电荷积累的后果相关的问题。本NASA技术手册不能替代工程专业知识,而是旨在作为指南。仅在本NASA技术手册中应用指南来进行特定任务并不需要良好的要求。为ESD专家定制特定任务的准则对于良好的要求至关重要。未能正确考虑航天器充电问题,这显着导致了航天器功能的丧失以及整个车辆的损失。请求应通过https://standards.nasa.gov提交信息。应通过MSFC表格4657提交对本NASA技术手册进行更改的请求,更改NASA工程标准的请求。Original Signed by Adam West for June 7, 2022 _______________________________ ________________ Ralph R. Roe, Jr. Approval Date NASA Chief Engineer
锂离子 (Li-ion) 电池的热管理方法并不总是能跟上能量存储和电力传输能力的进步。根本原因分析和经验证据表明,电池中的热失控 (TR) 和电池间热传播是由于电池内部物理和化学特性的不利变化造成的。然而,业界广泛使用最初为水基电池设计的电池管理系统 (BMS) 来管理锂离子电池。即使是“最佳”的 BMS,可以同时监测每个电池的电压和外表面温度,也无法防止 TR 或 TR 传播,因为电压和表面安装的温度传感器不会跟踪电池内部快速出现的不良事件。大多数 BMS 通常包括安装在选定电池上的几个热敏电阻,以监测其表面温度。跟踪作为 TR 前兆的电池内变化的技术正在变得可用。同时,导致电池间 TR 传播的复杂路径正在被成功建模和绘制。防止 TR 和热传播的创新解决方案正在推进中。这些包括用于快速监测每个电池内部健康状况的现代 BMS,以及用于减少 TR 情况下快速的电池间热量和物质传输的有害影响的物理和化学方法。© 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/1945-7111/abc0a5]
B.Pharm 学生,Amepurva Forum 的 Nitant 药学研究所 摘要 超分子化学显著推动了药物输送系统的发展,为增强药物稳定性、溶解度和靶向输送提供了新方法。本综述探讨了药物输送中使用的各种超分子载体,包括环糊精、主客体系统、树枝状聚合物和自组装纳米结构。我们讨论了药物包封和释放的机制,强调了最近的进展,并解决了该领域的当前挑战。我们还考虑了未来的研究方向和在临床环境中的潜在应用。 关键词:超分子设计、药物输送、环糊精、主客体系统、树枝状聚合物、自组装 1. 简介 1.1 背景 随着超分子化学的出现,药物输送领域发生了重大变化。基于非共价相互作用的超分子系统为提高药物溶解度、稳定性和靶向能力提供了创新的解决方案 (1)。 1.2 目标 本综述旨在全面概述药物输送中的超分子设计策略,重点介绍最新进展、机制、应用和未来前景。 2. 药物输送中的超分子载体 2.1 环糊精 2.1.1 结构和性质 环糊精是具有亲水外表面和疏水核心的环状寡糖。这种独特的结构使它们能够与各种药物形成包合物,从而提高其溶解度和稳定性(2、3)。 2.1.2 应用 环糊精已用于多种药物制剂中,以改善难溶性药物的输送。例子包括用于抗炎和抗癌药物的羟丙基-β-环糊精(4)。 2.1.3 挑战 环糊精的局限性包括其载药能力和潜在毒性。正在探索环糊精衍生物的进展以解决这些问题(5)。
F.1 节 - 目的和范围。本部分规定了注册人负责使用诊断性 X 射线设备和成像系统的要求,这些要求由根据州法规授权和许可从事医疗或兽医学的个人或在其监督下使用。本部分的规定是对本法规 A、B、D、G 和 J 部分其他适用规定的补充,而不是替代。一些注册人可能还需遵守本法规 I 和 X 部分的要求。F.2 节 - 定义。本部分中使用的定义如下:“可接触表面”是指制造商提供的辐射产生机外壳或外壳的外表面。“附加过滤”是指除固有过滤之外的任何过滤。“铝当量”是指在规定条件下与所讨论材料具有相同衰减的 1100 型铝合金 1/ 的厚度。 “组装商”是指从事将一个或多个组件组装、更换或安装到 X 射线系统或子系统中的任何人。该术语包括 X 射线系统的所有者或其员工或代理人,他们将组件组装成随后用于提供专业或商业服务的 X 射线系统。“衰减块”是指尺寸为 20 厘米 x 20 厘米 x 3.8 厘米的块或堆栈,由 1100 型铝合金 1/ 或具有等效衰减的其他材料制成。“自动曝光控制 (AEC)”是指自动控制一个或多个技术因素以在预选位置获得所需辐射量的设备(包括光定时器和离子室等设备)。“屏障”(参见“保护屏障”)。“光束轴”是指从源到 X 射线场中心的一条线。 “限束装置”是指一种提供限制X射线场尺寸的装置。“骨密度测定系统”是指一种使用电子产生的电离辐射来确定人类患者骨骼结构密度的医疗设备。