本文提出利用运动想象 (MI) 技术处理脑电 (EEG) 信号来控制下肢外骨骼。为此,使用 Nautilus16 系统通过脑机接口 (BCI) 获取 EEG 信号。为此,使用了具有两个自由度的下肢级外骨骼,该外骨骼基于金迪奥大学电子工程项目设计和制造的 CPWalker 模型。为了控制外骨骼,我们利用径向基函数 (RBF) 核实现了支持向量机 (SVM),该核可以根据大脑运动节律的分析来识别运动意图(右肢或左肢)。最后,为了在外骨骼中产生运动,使用串行接口,该接口将 Python 开发环境与 Arduino Uno 卡进行通信,根据分类模型产生的响应,将控制命令发送到外骨骼电机。为了评估原型,我们针对两名年龄在 22 至 25 岁之间的完全健康的用户进行了一系列试点测试。根据生成模型的训练参数对被试的脑电信号进行滤波、分割和处理,获得91%的准确率结果。关键词:EEG-BCI;支持向量机;外骨骼
工作与安全。您对工作和连接眼镜的研究的背景和目的是什么?AurélienLux。 在研究的起源上,这是一个与玻璃或互联头盔公司使用的风险相关的风险的问题。 的确,这些失望越来越多地使用了 - 尤其是在维护部门,但也在生产中 - 没有潜在风险是真实的问题。 首先,我们想知道使用这些位移设备的使用的影响,尤其是单层瀑布的风险,占工作中事故的11%。 为此,我们进行了一项实验室研究,在此期间,我们要求80名18至50岁的参与者遵循一条直线和另一条蜿蜒的途径。 第一次旅行是没有眼镜的,以便有参考课程。 然后他们重新开始,但是这次配备了一场连接的灾难,通过该灾难,练习是不同的。 一些练习很容易,例如计算显示的符号数量;当分析齿轮旋转方向时,其他更困难的是需要更多的关注。AurélienLux。在研究的起源上,这是一个与玻璃或互联头盔公司使用的风险相关的风险的问题。的确,这些失望越来越多地使用了 - 尤其是在维护部门,但也在生产中 - 没有潜在风险是真实的问题。首先,我们想知道使用这些位移设备的使用的影响,尤其是单层瀑布的风险,占工作中事故的11%。为此,我们进行了一项实验室研究,在此期间,我们要求80名18至50岁的参与者遵循一条直线和另一条蜿蜒的途径。第一次旅行是没有眼镜的,以便有参考课程。然后他们重新开始,但是这次配备了一场连接的灾难,通过该灾难,练习是不同的。一些练习很容易,例如计算显示的符号数量;当分析齿轮旋转方向时,其他更困难的是需要更多的关注。
如今,由于改进的机器人技术以及人们对与机器人互动的积极看法,ERS变得越来越流行。 人机协作技术可以增强外骨骼的便利性或舒适性,如康复研究所示(Campeau-Lecours等,2018; Wu and Li,2019)。 此外,可以广泛用于康复(Zhang X.等,2017),提供电力援助并帮助患者恢复正常生活(He。 例如,可穿戴机器人(WR)可以发挥与人类关节相同的作用和功能。 通常,它可以通过了解用户执行不同任务的意图来帮助人们。 此外,使用多传感器网络,ERS可以收集患者的运动意图,并与用户的运动完全合作。如今,由于改进的机器人技术以及人们对与机器人互动的积极看法,ERS变得越来越流行。人机协作技术可以增强外骨骼的便利性或舒适性,如康复研究所示(Campeau-Lecours等,2018; Wu and Li,2019)。此外,可以广泛用于康复(Zhang X.等,2017),提供电力援助并帮助患者恢复正常生活(He。例如,可穿戴机器人(WR)可以发挥与人类关节相同的作用和功能。通常,它可以通过了解用户执行不同任务的意图来帮助人们。此外,使用多传感器网络,ERS可以收集患者的运动意图,并与用户的运动完全合作。
6计算机学生摘要,我们已经看到了康复外骨骼的出现,在康复疗法方面发生了革命。这些可穿戴的机器人正在改变瘫痪的患者和中风幸存者的游戏,为康复提供了新的希望。我们的团队一直在探索外骨骼设计的迷人世界,我们很高兴分享我们的见解。从机械设计到人类机器人相互作用,这些设备正在推动康复评估和治疗中可能的边界。在这篇评论中,我们将带您穿越康复外骨骼技术的发展。我们将研究这些人工外骨骼背后的生物力学,以了解联合机制和自由度。我们还将探索尖端的传感器技术,例如力传感器和惯性测量单元,从而使精确的运动控制成为可能。另外,我们将检查个性化治疗的自适应控制算法,并分享来自临床试验的现实世界经验。最后,您将清楚地了解该领域的前进方向及其改变生活的潜力。关键字:康复外骨骼,辅助机器人技术,可穿戴外骨骼,神经居住技术,人类机器人互动(HRI)康复外骨骼技术的进化康复外骨骼的旅程是不可思议的。从他们谦虚的开端到尖端设备,我们今天看到,这些可穿戴的机器人彻底改变了康复疗法领域。这些早期设计的示例包括DGO,Lopes和Alex 1。早期设计用于康复目的的外骨骼的概念在1960年代开始成形。最初,这些设备笨重,固定,主要用于训练具有体重支撑的跑步机的患者。这些系统旨在减少康复期间下肢的负载,但其有限的移动性限制了它们用于临床环境。随着技术的高级,研究人员开始专注于开发便携式辅助外骨骼。到2000年代初,我们看到了Ekso,Rewalk,Indego和Exo H2 1等设备的出现。这些外骨骼旨在为脊髓损伤导致完全麻痹的个体提供最大的援助。但是,它们仍然相对较重,重11至25千克1。
在许多工业工作环境中,由于自动化流程和机器人的使用,员工的工作量正在减少。然而,在各种职业中,某些任务和活动仍将手动完成,例如护理和技术行业,这些行业高度个性化、机动性和灵活性非常重要。即使在高度自动化的操作中,例如在汽车行业,人类体力劳动对于某些装配步骤至关重要,员工还不能(目前)被机器人取代(Dengler 和 Matthes,2018 年)。虽然导致肌肉骨骼疾病 (MSD) 的因素有很多种(例如年龄、遗传、心理因素),但其中一个主要促成因素是肌肉骨骼系统的生物力学超负荷,这可以通过定期举起重物或执行单调重复的工作来促进(Marras,2005 年;da Costa 等人,2010 年)。肩关节活动范围大,特别容易受伤和超负荷(Terry and Chopp,2000 年)。例如,在德国,近 24% 的员工需要在工作期间定期搬运重物;16.9% 的员工报告定期以强制姿势工作(例如高空作业)(德国联邦劳工和社会事务部,2019 年)。因此,德国工作场所五分之一的病假是由于肌肉骨骼失调引起的,这并不奇怪。对于 55 岁以上的工人来说,频率甚至更高,为 25
1 麦哲伦大学电气工程系,蓬塔阿雷纳斯 6210427,智利;pbarria@rehabilitamos.org 2 南克鲁斯狮子俱乐部康复中心,蓬塔阿雷纳斯 6210133,智利;kbaleta@rehabilitamos.org 3 脑机接口系统实验室,系统工程和自动化系,米格尔·埃尔南德斯埃尔切大学,03202 埃尔切,西班牙 4 哥伦比亚胡里奥加拉维托工程学院生物医学工程系,波哥大 111166,哥伦比亚;angie.pino-l@mail.escuelaing.edu.co (AP);bryan.tovar@mail.escuelaing.edu.co (NT);daniel.gomez-v@mail.escuelaing.edu.co (DG-V.); marcela.munera@escuelaing.edu.co (MM) 5 圣胡安国立大学自动化研究所,阿根廷圣胡安 5400 6 圣埃斯皮里图联邦大学电气工程研究生院,巴西维多利亚 29075-910;camilo.diaz@ufes.br * 通信地址:carlos.cifuentes@escuelaing.edu.co † 这些作者对这项工作做出了同等贡献。
6 计算机专业学生摘要随着康复外骨骼的出现,我们看到了康复治疗的革命。这些可穿戴机器人正在改变瘫痪患者和中风幸存者的命运,为康复带来新的希望。我们的团队一直在探索迷人的外骨骼设计世界,我们很高兴分享我们的见解。从机械设计到人机交互,这些设备正在突破康复评估和治疗的极限。在这篇评论中,我们将带您了解康复外骨骼技术的演变。我们将深入研究这些人工外骨骼背后的生物力学,研究关节机制和自由度。我们还将探索使精确运动控制成为可能的尖端传感器技术,如力传感器和惯性测量单元。此外,我们将研究个性化治疗的自适应控制算法,并分享临床试验的真实经验。到最后,您将清楚地了解这个领域的发展方向及其改变生活的潜力。关键词:康复外骨骼、辅助机器人、可穿戴外骨骼、神经康复技术、人机交互 (HRI) 康复外骨骼技术的演变 康复外骨骼的发展历程可谓非同寻常。从不起眼的开始到我们今天看到的尖端设备,这些可穿戴机器人彻底改变了康复治疗领域。 早期设计 用于康复目的的外骨骼概念开始形成于 20 世纪 60 年代。最初,这些设备体积庞大、固定式,主要用于在跑步机上训练患者并支撑体重。这些早期设计的例子包括 DGO、LOPES 和 ALEX 1。这些系统旨在减轻康复期间下肢的负荷,但它们的有限移动性限制了它们在临床环境中的使用。随着技术的进步,研究人员开始专注于开发便携式辅助外骨骼。到 21 世纪初,我们看到了 Ekso、ReWalk、Indego 和 Exo H2 1 等设备的出现。这些外骨骼旨在为因脊髓损伤而完全瘫痪的人提供最大程度的帮助。然而,它们仍然相对较重,重达 11 至 25 公斤 1 。
一种动力下肢外骨骼包括 ReWalk™ Personal 6.0(ReWalk Robotics)和 Indego®(Parker Hannifin),可根据姿势信息提供用户启动的移动性。站立、行走、坐下和上下楼梯模式由腕带上的模式选择器决定。ReWalk™ 包括一系列传感器和专有算法,可分析身体运动(例如躯干倾斜)并操纵电动腿部支架。倾斜传感器用于向机载计算机发出信号,告知何时采取下一步行动。使用动力外骨骼的患者必须能够使用前臂拐杖或助行器用手和肩膀保持平衡。使用 ReWalk™ [1] 行走的说明是将拐杖放在身体前方,然后稍微弯曲肘部,将重量移向前腿,向前腿侧倾斜。后腿将稍微抬离地面,然后开始向前移动。使用拐杖伸直后腿可以继续向前移动。另一条腿重复此过程。