多伦多,加拿大和费城 - 2024年9月11日(商业线) - Radiant Biothapeutics,这是一家临床前生物技术公司,开发了一个抗体平台,旨在为面临改变生活的疾病的患者提供变革性疗法,宣布已关闭了3500万美元的系列融资。这一轮由Bill&Melinda Gates Foundation和加拿大振幅企业共同领导。该系列A的其他参与者包括新投资者BDC Capital,加拿大业务发展银行的投资部门,通过其Thrive Venture Fund和苏格兰爱丁堡的ABRDN PLC;现有的投资者面对,亚历山大风险投资和多伦多创新加速伙伴(TIAP)。Radiant建立了一个称为Multagody™的一流,专有的,多价,多特异性抗体平台。资金将使Radiant能够进一步发展公司的主要临床候选人4-1BB,并将其转向临床试验。“这些支持性投资者分享了我们提供强大的,多功能生物制剂的愿景,并有可能为患有衰弱和威胁生命的疾病的患者提供治疗,” Radiant总裁兼首席执行官Arthur J. Fratamico说。“这项投资使我们能够进一步展示我们平台在多个治疗领域的独特功能和广度,重点是肿瘤学,炎症和免疫学,以及包括艾滋病毒在内的全球健康和传染病。”
牛病毒性腹泻病毒 (BVDV) 可引起生殖、肠道和呼吸道疾病。接种疫苗对于提高牛群对 BVDV 传播的抵抗力至关重要。佐剂的选择是疫苗接种过程成功的重要因素。单月桂酸甘油酯或甘油单月桂酸酯是一种具有免疫调节作用的安全化合物。本研究旨在评估单月桂酸甘油酯作为新型佐剂的功效。通过制备以不同浓度单月桂酸甘油酯为佐剂的灭活 BVDV (NADL 株) 疫苗进行检查,并与已注册的当地制备的多价疫苗 (Pneumo-4) 进行比较,该疫苗含有 BVD (NADL 株)、BoHV-1 (Abou Hammad 株)、BPI3 (菌株 45) 和 BRSV (菌株 375L),并以氢氧化铝凝胶为佐剂。灭活的 BVDV 疫苗以 0.5%、1% 和 2% 的单月桂酸甘油酯为佐剂,制备而成。对五组动物进行了效力测试。第一组未接种疫苗,作为对照组,而其他三组则使用制备的疫苗进行接种。第五组接种了 Pneumo-4 疫苗。通过使用酶联免疫吸附试验 (ELISA) 测量病毒中和抗体来监测疫苗接种反应。研究发现,与以氢氧化铝凝胶为佐剂的商业疫苗相比,含有 1% 和 2% 单月桂酸甘油酯的 BVD 灭活疫苗可引发更高的中和抗体,其作用持续时间更长(九个月),且注射部位无反应。
许多生物分子冷凝物被认为是通过液体 - 液相分离(LLP)形成的多价大酚 -对于那些通过这种机制形成的人来说,我们的理解受益于关键组成部分和活动的生化重新定义。迄今为止,基于RNA的冷凝物的重组主要是基于相对简单的分子集合。然而,蛋白质组学和测序数据表明,基于天然RNA的浓度富含数百至数千种不同的分量,遗传数据表明多种相互作用可以在不同程度上有助于凝结物的形成。从这个角度来看,我们描述了通过不同水平的生化重构建立基于RNA的冷凝水的最新进展,以此来弥合简单的体外重构和细胞分析之间的间隙。复杂的重组提供了有关多组分冷凝物的形成,调节和功能的洞察力。我们专注于两个RNA - 蛋白质冷凝案例研究:应力颗粒和RNA加工体(Podies),并检查促进LLP的多个组件之间合作相互作用的证据。从这些研究中提出的一个重要概念是,组成和化学计量法调节冷凝水内的生化活性。基于从压力颗粒和p身体中学到的经验教训,我们讨论了了解凝结物成分之间热力学关系的前瞻性方法,其目的是开发组成和材料特性的预测模型及其对生物化活性的影响。我们预计定量重构将有助于理解各种RNA的复杂热力学和功能 - 蛋白质冷凝物。
锂离子电池(LIB)是移动设备和电动汽车(EV)的重要组件,因为它们的寿命很高,寿命很长。但是,为了满足对电气设备的不断增长的需求,必须进一步提高LIB能量密度。阳极材料是锂电池的关键组成部分,可显着提高总能量密度。libs是电动汽车和储能中广泛使用的电化学电源。libs被证明是一致的,因为它们具有优质的功率密度,与其他类型的可充电电池相比,它与阴极类型直接相关,寿命延长。libs是通过合适的电解质通过复杂途径开发的,该途径几乎相似地相位。这项工作集中在碱金属离子(LI +)中插入石墨中,总结了实验和理论计算的重要进展,这些计算是密切的宿主 - 阵营关系及其基本力学的基础。这项研究阐明了插入机制对电极表面的影响,以实现高性能的LIB。锂金属离子在分层电极材料中被插入单价和多价离子中。这将使在存储和转换应用中的宿主材料中更好地理解互化化学。这篇评论强调了使用不同类型的电极材料改善其性能的锂互插性化学对电池电池的影响。它还研究电极性能对LIB技术的影响。
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。
fi g u r e 2多价协议的品种。仅通过组合在此处可视化的双向品种来可视化仅可视化双向算法协议,三向和四向算法协议测试也可以进行。(a)分配和聚类算法之间的协议。显示了三个群集,其中每个等级的组件ASV的比例分配给每个分类单元,而大型蓝色圆圈中的分类学分配代表了所有组件ASV收到的分类。例如,cluster1包含三个ASV,均分配给了节肢动物和玛拉科斯特拉卡类,但它们被分配给不同的顺序(decapoda和euphausiaceae)。因此,一种保守的方法是将群集分配给Malacostraca级,但在较低的排名中将其分配得不明。(b)聚类算法之间的一致性。显示了两个替代聚类输出(红色和蓝色椭圆形,包含由黑条表示的ASV)。例如,蓝色cluster1包含两个红色簇,每个簇包含三个和四个ASV。在这种情况下,聚类算法之间的一致性和分歧提供了其他信息,以询问特定感兴趣的特定簇之间的内部结构或潜在关系。(c)分配方法之间的协议。显示了两个ASV,每个ASV都从IDTAXA和BLAST接收分配。ASV1在较低的等级(家庭和属)中获得不同的作业,而ASV2在所有等级中都从两种算法中接收相同的作业。因此,一种保守的方法将把ASV1分配给Charchariniformes的订单,但在较低的等级中将其分配给了。
粘液是一种动态生物水凝胶,主要由糖蛋白粘蛋白组成,具有独特的生物物理特性,并形成保护细胞免受多种病毒侵害的屏障。在这里,这项工作开发了一种基于聚甘油硫酸盐的树枝状粘蛋白启发共聚物 (MICP-1),其中约 10% 的活性二硫化物重复单元作为交联位点。MICP-1 的低温电子显微镜 (Cryo-EM) 分析揭示了细长的单链纤维形态。MICP-1 对许多病毒表现出潜在的抑制活性,例如单纯疱疹病毒 1 (HSV-1) 和 SARS-CoV-2(包括 Delta 和 Omicron 等变体)。MICP-1 使用线性和支链聚乙二醇硫醇 (PEG-thiol) 作为交联剂,生产出具有与健康人痰液相似的粘弹性能和可调节微结构的水凝胶。使用单粒子跟踪微流变学、电子顺磁共振 (EPR) 和低温扫描电子显微镜 (Cryo-SEM) 来表征网络结构。合成的水凝胶表现出自修复特性,以及可通过还原调节的粘弹性能。使用 transwell 测定法来研究水凝胶对 HSV-1 病毒感染的保护特性。活细胞显微镜证实,由于网络形态和阴离子多价效应,这些水凝胶可以通过捕获病毒来保护底层细胞免受感染。总体而言,这种新型粘蛋白共聚物可生成数克级的粘液模拟水凝胶。这些水凝胶可用作富含二硫化物的气道粘液研究的模型,也可用作生物材料。
基于脂质体的疫苗代表了免疫疗法的显着进步,因为它们的多功能能力封装和呈现抗原,佐剂和靶向配体。这些脂质囊泡具有生物相容性和适应性的结构,提供了增强的免疫原性,长时间的抗原暴露和降低的反应生成性。通过封装治疗剂,脂质体可保护抗原免受降解并促进受控释放,从而提高疫苗的稳定性和功效。脂质体的表面修饰使抗原能够表现出模仿自然免疫反应的策略,从而有效地吸引了免疫细胞。此显示,结合脂质体介导的佐剂递送,通过激活树突状细胞,巨噬细胞,T细胞和B细胞来放大体液和细胞免疫。脂质体还允许多价疫苗设计,靶向多种病原体表位,这对于打击复杂的感染至关重要。先进的技术,例如共价偶联,金属授粉和脂质尾巴锚定,增强抗原表现和免疫细胞的接合。脂质体的尺寸,表面电荷和脂质结构对于确定与免疫细胞的相互作用并影响其作为疫苗辅助递送系统的作用至关重要。本评论探讨了基于脂质体的疫苗的最新创新,重点是抗原表现,免疫激活和记忆形成的机制。这些发现强调了脂质体平台作为下一代疫苗技术的潜力,能够提供稳健和持久的免疫反应。doi:https://doi.org/10.22034/mnba.2024.488511.1102©作者2024。Birkar简介LIPID微型和纳米载体吸引了
在根尖分生组织(RAM)中,干细胞生态位(SCN)的维持对于适当的植物生长至关重要。过多的3(PLT3)最近被确定为该过程的关键调节剂,在该过程中,它与与Wuschel相关的同源物ox 5(Wox5)相互作用,以维持静态中心(QC)和柱状干细胞(CSC)。PLT3通过液态液相(LLP)形成核冷凝物,这是一个动态过程,其中生物分子响应各种刺激而聚集了。接受LLP的蛋白质通常包含本质上无序的区域(IDR),例如prion-likedomain(PRDS),这些区域具有构象的灵活性和多价性。这些蛋白质中的许多在调节植物的发育和环境反应中起关键作用。例如,以时钟相关的转录调节器早期开花3(ELF3),以其在开花,昼夜节律调节中的作用而闻名,并且在根中含有温度传感,其中包含两个PRDS,并经历了LLP。在这里,我们首次报告其在根scn维护中的作用。我们证明了Elf3在根scn中表达,它位于亚细胞冷凝水。在瞬态n。n。benthamiana实验中,这些冷凝物表现出液体样行为,并与核中的PLT3共定位。通过FRET-FLIM分析,我们发现Elf3和PLT3之间的相互作用,这取决于其LLP的行为,并且对温度敏感。此外,我们将植物色素相互作用因子(PIF)蛋白识别为ELF3的核班车,从而促进其募集到PLT3-核冷凝物中。因此,我们提出了一个模型,其中LLPS介导的ELF3,PLT3和PIF之间的相互作用可以代表一种快速,灵活的机制,以将环境信号整合到SCN维护中。
通过用可再生能源代替化石燃料(RES)是未来几十年的关键任务,以实现欧盟雄心勃勃的气候保护目标,这是一项关键任务。有关RES在电力部门可能的发展和销售性的信息对于评估未来的资金需求至关重要。但是,能源系统中RES发电的份额上涨降低了平均市场价格并提高了价格波动。平衡价格变化需要相当大的灵活性。通过电力部门和其他需求行业之间的更紧密互连,电力市场的额外灵活性使得将RES的市场价值保持在更接近一般市场价格水平的可能性,而与其股票无关。因此,这种部门耦合可以有助于成本效益向低碳能源系统的过渡。本文研究了高效部门耦合对具有雄心勃勃脱碳的欧洲能源系统中RES市场价值的影响。我们通过应用Onertile模型来分析不同的方案,该模型使用集成的成本优化方法以及由于行业耦合而引起的灵活性选项,并提供了RES的详细未来开发。在我们的分析中,我们检查了三个灵活性选项:电动汽车的智能充电,建筑物中的分散热泵以及多价地区供暖网格。我们表明,在区域供暖中,在地区供暖中使用电力的灵活使用对市场价值产生了重大影响,而柔性电动汽车充电和用热泵的柔性加热的影响很小。由于充电或加热过程的负载转移而引起的短期灵活性仅显示对市场价值的影响有限。区域供暖的燃料转换提供了改变直接响应中电力绝对需求的可能性,并大大减少了RES的缩减。