摘要 - 随着用户应用程序服务需求的进步,IoT系统倾向于将任务运送到边缘服务器以进行执行。当前关于流量边缘计算的大多数研究都忽略了应用程序综合之间的依赖关系。主要用于单用户场景中,主要用于应用拓扑拓扑的边缘计算的少数研究。与以前的工作不同,我们的工作主要解决了在多源场景中使用边缘计算弹出的依赖任务,这更符合现实。在本文中,将流量问题的依赖任务建模为马尔可夫决策过程(MDP)第一。然后,我们通过共同考虑,通过共同考虑几个用户之间的应用拓扑,并共同考虑了一个基于有向的无环图(DAG)的嵌入层的参与者 - 批评机制。最后,模拟的结果还显示了所提出的Aced算法的优先级。
摘要 - 越来越多地使用深入强化学习(DRL)框架来解决机器人技术中的高维连续控制任务。然而,由于缺乏样本效率,在机器人域中将DRL应用于在线学习实际上仍然是不可行的。一个原因是,DRL代理不利用以前任务的解决方案。基于后继功能(SFS)的多任务DRL代理的最新工作已被证明在提高样本效率方面非常有前途。在这项工作中,我们提出了一种新的方法,该方法统一了两个先前的多任务RL框架,SF-GPI和价值组成,并将它们适应连续的控制域。我们利用后继功能的组成属性来构成一组原始人的策略分布,而无需培训任何新的政策。最后,为了证明多任务机制,我们基于Isaacgym提出了概念验证的基准环境,尖端和指针,这有助于大规模平行化以加速实验。我们的实验结果表明,我们的多任务代理具有与软演员 - 批评者(SAC)相同的单任务性能,并且代理可以成功地转移到新的看不见的任务中。我们在https://github.com/robot-poception-group/ concurrent_composition提供的代码作为开放源代码。
摘要 — 在多任务远程推理系统中,智能接收器(例如,指挥中心)使用从多个远程源(例如,边缘传感器)接收的数据特征执行多个推理任务(例如,目标检测)。在这些系统中促进及时推理的关键挑战来自 (i) 源的计算能力有限,无法从其输入中产生特征,以及 (ii) 信道的通信资源有限,无法同时将特征传输到接收器。我们开发了一种新颖的计算和通信协同调度方法,该方法确定特征生成和传输调度,以最大限度地减少受这些资源限制的推理错误。具体来说,我们将协同调度问题表述为弱耦合马尔可夫决策过程,以基于信息时代 (AoI) 的及时性来衡量推理错误。为了克服其 PSPACE 难度,我们分析了该问题的拉格朗日松弛法,从而得出增益指标,用于评估每个潜在特征生成-传输调度操作的推理误差的改善。在此基础上,我们开发了一种最大增益优先 (MGF) 策略,我们证明,随着推理任务数量的增加,该策略对于原始问题而言是渐近最优的。实验表明,MGF 相对于不同任务、渠道和来源的基线策略获得了显着的改进。
序列到功能分析是人类遗传学中的一项具有挑战性的任务,特别是在从生物序列(例如个体化基因表达)预测细胞类型特异性多组学表型时。在这里,我们提出了一种新方法 UNICORN,其预测性能比现有方法有所提高。UNICORN 将来自生物序列的嵌入以及来自预先训练的基础模型的外部知识作为输入,并使用精心设计的损失函数优化预测器。我们证明 UNICORN 在细胞水平和细胞类型水平的基因表达预测和多组学表型预测方面均优于现有方法,并且它还可以生成预测的不确定性分数。此外,UNICORN 能够将个性化的基因表达谱与相应的基因组信息联系起来。最后,我们表明 UNICORN 能够表征不同疾病状态或扰动的复杂生物系统。总体而言,基础模型的嵌入可以促进理解生物序列在预测任务中的作用,并且结合多组学信息可以提高预测性能。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年2月20日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2024.02.16.580578 doi:Biorxiv Preprint
摘要 —近年来,深度神经网络在医学成像中的各种识别和分割任务中取得了最佳性能,包括脑肿瘤分割。我们发现,分割脑肿瘤面临着数据不平衡的问题,即属于背景类(非肿瘤像素)的像素数量远大于属于前景类(肿瘤像素)的像素数量。为了解决这个问题,我们提出了一个级联结构的多任务网络。我们的模型包含两个目标,即(i)有效区分脑肿瘤区域和(ii)估计脑肿瘤掩模。第一个目标由我们提出的上下文脑肿瘤检测网络执行,该网络起到注意力门的作用,只关注脑肿瘤周围的区域,而忽略与肿瘤相关性较小的远邻背景。与处理每个像素的其他现有物体检测网络不同,我们的上下文脑肿瘤检测网络只处理真实实例周围的上下文区域,这种策略旨在产生有意义的区域提议。第二个目标建立在 3D 空洞残差网络和编码解码网络之下,以便有效地分割大物体和小物体(脑肿瘤)。我们的 3D 空洞残差网络采用跳跃连接设计,使深层的梯度能够直接传播到浅层,从而保留不同深度的特征并用于相互细化。为了从体积 MRI 数据中整合更大的上下文信息,我们的网络利用具有各种内核大小的 3D 空洞卷积,从而扩大了滤波器的感受野。我们提出的网络已经在包括 BRATS2015、BRATS2017 和 BRATS2018 数据集在内的各种数据集上进行了评估,包括验证集和测试集。我们的性能已通过基于区域的指标和基于表面的指标进行了基准测试。我们还与最先进的方法进行了比较。1
摘要 - 预测阿尔茨海默氏病(AD)进展的机器学习(ML)技术可以极大地帮助研究人员和临床医生建立有效的AD预防和治疗策略。数据形式的单调性和医疗数据稀缺性是当前限制ML方法性能的主要原因。在这项研究中,我们提出了一种新型的基于相似性的定量方法,该方法同时考虑了脑生物标志物之间结构变化的幅度和方向关系,并将量化数据编码为第三阶张量,以解决数据形式单调性问题,然后将量张量的多任务学习模型相结合以预测AD AD Progssive。在此模型中,对每个患者的预测都被视为一项任务,每个任务共享通过张量分解获得的一组潜在因素,任务之间的知识共享可以改善模型的概括并解决医疗数据稀缺问题。该模型可用于有效预测AD积分磁共振成像(MRI)数据和AD患者在不同阶段的认知评分的进展。为了评估所提出方法的有效性,我们利用阿尔茨海默氏病神经影像学计划(ADNI)进行了广泛的实验。结果表明,所提出的模型比各种认知评分上的单项任务和最先进的多任务回归方法更准确,一致地预测AD的进展。所提出的方法可以识别患者的大脑结构变异,并将其应用于可靠地预测和诊断AD进展。
脑机接口,尤其是被动脑机接口 (pBCI),由于能够估计和监控用户心理状态,越来越受到基础研究和应用研究与开发社区的关注。测试新的管道和基准分类器以及特征提取算法是进一步研究该领域的关键。不幸的是,pBCI 研究中的数据共享仍然很少。COG-BCI 数据库包含 29 名参与者在 3 个独立会话中的记录,这些会话中有 4 个不同的任务 (MATB、N-Back、PVT、Flanker),旨在引发不同的心理状态,总共超过 100 小时的开放 EEG 数据。该数据集在主观、行为和生理层面进行了验证,以确保其对 pBCI 社区的实用性。此外,还给出了一个概念证明,其中包含心理工作量估计管道和结果的示例,以确保数据可用于 pBCI 管道的设计和评估。这项工作为在开放科学框架中推广 pBCI 的使用做出了巨大努力。
脑网络将脑区之间的复杂连接表征为图结构,为研究脑连接组提供了有力的手段。近年来,图神经网络已成为一种流行的结构化数据学习范式。然而,由于数据获取成本相对较高,大多数脑网络数据集的样本量有限,这阻碍了深度学习模型的充分训练。受元学习的启发,元学习可以在有限的训练样本下快速学习新概念,本文研究了在跨数据集环境中分析脑连接组的数据高效训练策略。具体来说,我们建议在大样本量的数据集上对模型进行元训练,并将知识迁移到小数据集。此外,我们还探索了两种面向脑网络的设计,包括图谱变换和自适应任务重新加权。与其他预训练策略相比,我们基于元学习的方法实现了更高、更稳定的性能,这证明了我们提出的解决方案的有效性。该框架还能够以数据驱动的方式获得有关数据集和疾病之间相似性的新见解。
大量积累的药物基因组学、化学基因组学和副作用数据集为药物反应预测、药物靶标识别和药物副作用预测提供了前所未有的机会。现有的计算方法将其范围限制在这三个任务中的一项,不可避免地忽略了它们之间的丰富联系。在这里,我们提出了 DrugOrchestra,这是一个深度多任务学习框架,可以联合预测药物反应、靶标和副作用。DrugOrchestra 利用预先训练的基于分子结构的药物表征来连接这三个任务。DrugOrchestra 不是直接对单个任务进行微调,而是使用深度多任务学习通过同时对药物反应、靶标和副作用预测进行微调来获得基于表型的药物表征。通过将这三个任务结合在一起,DrugOrchestra 能够仅通过了解其分子结构来预测看不见的药物。我们通过整合三个任务中的 8 个数据集,构建了一个包含超过 21,000 种药物的异构药物发现数据集。与在单个任务或单个数据集上训练的方法相比,我们的方法获得了显着的改进。我们进一步揭示了 8 个数据集和 3 个任务之间的可迁移性,为理解药物机制提供了新的见解。关键词:多任务学习、药物靶标预测、药物副作用预测、药物反应预测可用性:https://github.com/jiangdada1221/DrugOrchestra