©作者2022。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
多保真替代建模旨在通过结合来自多个来源的数据来学习最高保真度的准确替代物。传统方法几乎不能扩展到高维数据。深度学习方法利用基于神经网络的编码器和解码器来提高可扩展性。这些方法在不包括相应的解码器参数的情况下共享跨保真度的编码表示。这阻碍了推理的表现,尤其是在分布外的sce-narios中,当最高的保真度数据具有限制性域覆盖范围时。为了解决这些限制,我们提出了多余的残差纽约过程(MFRNP),这是一种新型的多保真替代建模框架。mfrnp可以以最高的忠诚度为较低的保真度和地面真相的凝聚输出之间的残余模型。汇总将解码器引入分享步骤,并优化了较低的保真度解码器,以准确捕获前保和交叉信息。我们表明,MFRNP sigsig-在学习偏微分方程和现实世界中的建模任务方面表现出了最先进的表现。我们的代码在以下网址发布:github.com/rose-stl-lab/mfrnp。
全球能源相关的碳排放量在2018年达到33.1吉龙的His-toric High。所有化石燃料的排放都增加了:仅电力部门就占排放增长的近三分之二[1]。增加的碳排放导致温度升高,预计在2100年的工业前水平高1.5 c。为了限制这种温度升高,到2030年,从2010年开始,全球排放量可能会下降约45%,到2050年达到净零[2]。氢(H 2)是一种替代能量载体,最高的热量为120 E 142 MJ/kg,而44 MJ/kg的汽油和20 mj/kg的煤[3]。世界上大多数国家都集中在绿色氢技术上,以减少行业,运输和商业部门的碳排放。到2050年,预计绿色氢的目标是超过5.4亿吨,仅运输部门就造成了1.54亿吨总份额[4,5]。在自然界中没有自由地发现氢,但可以从各种主要能源(例如生物量和化石燃料)以及次要能源(例如太阳能,风能和水力发电)等二级能源产生。生产的氢可以用作广泛的最终使用转换过程(例如电力,移动性,工业和建筑物)的燃料[6]。氢被认为是接近零的碳发射能载体;但是,通常基于
摘要:基于实施部位的最低太阳辐射,PV棒系统通常大小。这意味着在高太阳辐射的日子里,多余的能量可用。这项研究研究了农村卫生中心案件中PV系统中过量能量的潜力。考虑了埃塞俄比亚Tigray农村健康中心典型的PV安装的系统组件。卫生中心的电力负载和来自Mekelle City的太阳辐射数据被用作TRNSYS模型的输入。在每小时和十分钟的时间间隔内对系统中的过量能量进行分析。分析结果表明,在9月至5月的几个月中,可以使用过量的能量,可以热存储和利用。在这几个月中,多余的峰值功率范围从737到841 W,每日平均多余能量范围为2070年至2959 Wh。相比之下,在6月至8月的几个月中,由于太阳辐射较低,无法获得多余的能量。
多余的Vera(PV)是费城阴性髓产肿瘤的肿瘤,中位年龄为60-65。大多数患者被发现在JAK2基因中具有突变,其中96%涉及外显子14(V617F突变),而3–4%涉及外显子12。其他外显子(13或15)中的非规范性突变极为罕见[1,2],但在PV中也具有致癌潜力。PV 10年内血栓形成的风险超过20%。25%的患者在疾病持续时间的20年内发展出PV后MF(脊髓疾后骨髓纤维纤维化),并且转化为20年的急性髓样白血病(AML)或骨髓触发性神经质(MDN)的风险超过10%[3,4]。在异常核型,白细胞增多症≥15×10 9 /L和 /或 /或预见烷基化药物的老年患者中,blast骨转化的风险更高。进展的风险因素
多性疾病Vera(PV)是一种慢性骨髓增生性新血浆(MPN),其特征是红细胞过量。超过95%的PV患者疾病是由JAK2 V617F突变驱动的。虽然JAK2 V617F突变小鼠模型为PV生物学提供了机械见解,但这些模型中的大多数呈现出比在PV患者中发现的JAK2 V617F的变体等位基因频率(VAF)高得多的突变细胞负担。因此,当前的PV小鼠模型对PV DE Velopment的最早阶段的了解有限,包括疾病表现所需的最小突变细胞负担是什么。为了避免这些局限性,我们开发了一种使用CRISPR/CAS9同源指导修复(HDR)的PV的工程模型,以使JAK2 V6717F突变突变到人类CD34 +细胞的内源性基因座。Xenograftage靶向细胞进入NSGS小鼠,在体内概括了人类PV病理。我们使用此工具来解决两个问题:(i)生成PV病理所需的最小突变体VAF是什么,并且(ii)起源细胞的发育环境会影响MPN的疾病轨迹。该模型提供了一种有价值的临床前工具,可以在体内测试新的PV疗法,并在主要患者样品受到限制或不可用时研究PV的开发和进展。脊髓增生性肿瘤(MPN)是由造血干细胞和祖细胞(HSPC)中获得的体细胞突变驱动的,其特征是一个或多个髓样谱系的异常增殖。JAK2 V617F突变是MPN的反复驱动器。1,2 MPN可以作为多性心血症垂直(PV;过量的红细胞),必需的血小板细胞(ET;多余的血小板)或骨髓纤维化(MF;骨髓纤维化)。3-5然而,JAK2 V617F突变细胞的负担在患者中差异很大,并且可以诱导VAF非常低的临床表型。6,7在PV中,超过95%的患者将JAK2 V617F作为驱动致病性突变,但在某些患者中,突变负担可能低于3%VAF。 8尚不清楚这种低突变细胞负担如何产生MPN病理。 当前的JAK2 V617F小鼠建模策略利用复古病毒转导,9,10个转基因等位基因,11或遗传敲入(KI)模型。 12,13然而,这些模型中的大多数产生了高JAK2 V617F突变频率,这些突变频率不能准确反映PV患者的克隆轨迹。 为了超越小鼠模型的局限性,我们最近开发了从MPN患者移植CD34 +细胞的方法,以产生患者衍生的异种移植物(PDX)。 在MF的情况下,对患者衍生的CD34 +细胞的异型范围能够传播基因型,表型和关键患者病理,例如PDX中的网状纤维化。 14然而,尝试从PV患者产生PDX的尝试不太成功,植入率很差和可获得的CD34 +细胞数量有限6,7在PV中,超过95%的患者将JAK2 V617F作为驱动致病性突变,但在某些患者中,突变负担可能低于3%VAF。8尚不清楚这种低突变细胞负担如何产生MPN病理。当前的JAK2 V617F小鼠建模策略利用复古病毒转导,9,10个转基因等位基因,11或遗传敲入(KI)模型。12,13然而,这些模型中的大多数产生了高JAK2 V617F突变频率,这些突变频率不能准确反映PV患者的克隆轨迹。为了超越小鼠模型的局限性,我们最近开发了从MPN患者移植CD34 +细胞的方法,以产生患者衍生的异种移植物(PDX)。在MF的情况下,对患者衍生的CD34 +细胞的异型范围能够传播基因型,表型和关键患者病理,例如PDX中的网状纤维化。14然而,尝试从PV患者产生PDX的尝试不太成功,植入率很差和可获得的CD34 +细胞数量有限
人工智能 (AI) 领域的发展是“机器适应新情况、处理新兴情况、解决问题、回答问题、设计计划和执行各种其他功能的能力,这些功能需要人类通常具有的某种程度的智能 (Coppin, 2004, p. 4)”,在第四次工业革命 (Vázquez-Cano, 2021) 之后全速前进。几种具有惊人性能的创新工具相继推出;例如,最新版本的 ChatGPT (GPT-4o) 就在我们完成本文之前发布。然而,正如理论物理学家斯蒂芬霍金曾经说过的那样,“强大人工智能的崛起将是人类有史以来最好的事情,也可能是最糟糕的事情。我们还不知道哪一个”。
摘要:2018年,在2030年欧盟气候和能源政策计划中,在持久的论述中达成了欧盟关键机构 - 委员会,欧洲议会和欧洲理事会之间的协议。本文对欧盟包装进行了全面评估,其三个主要目标是:下温室气体排放,最终能源消耗中可再生份额较高,并提高了能源效率。我们发现,可再生和能源效率目标已经设定得如此之高,以至于衍生的排放减少(50%)超过了欧盟的气候目标(40%)。因此,例如,欧盟气候政策不需要使用碳价格来达到欧盟气候目标。但是,通过强加三个欧盟目标来实现气候目标并非成本效益。我们证明,获得50%温室气体排放量的成本效益政策将使年度福利(相对于参考方案)增加欧洲GDP的0.6%的数量。