结构电池是指既能储存电能又能承受机械载荷的多功能设备。在这种情况下,碳纤维成为一种引人注目的材料选择,它既能储存能量,又能为电池提供刚度和强度,兼具双重用途。先前的研究已经证明了结构电池电解液中金属锂的功能性正极的概念验证。这里展示了一种全碳纤维基结构电池,利用原始碳纤维作为负极,磷酸铁锂 (LFP) 涂层碳纤维作为正极,并使用薄纤维素隔膜。所有组件都嵌入结构电池电解液中并固化以提供电池的刚度。使用薄隔膜可以提高结构电池的能量密度。结构电池复合材料的能量密度为 30 Wh kg − 1,循环稳定性高达 1000 次循环,库仑效率约为 100%。值得注意的是,在与纤维方向平行测试时,全纤维结构电池的弹性模量超过 76 GPa - 这是迄今为止文献中报道的最高值。结构电池在替代电动汽车结构部件的同时减少传统电池数量方面具有直接意义。因此,为未来的电动汽车节省了重量。
摘要:由于不连续的动力学以及高维状态和动作空间,机器人的操作具有挑战性。在操纵任务中成功的数据驱动方法通常需要大量数据和专家证明,通常来自人类。现有的计划者仅限于特定系统,并且通常依靠用于使用演示的专业算法。因此,我们引入了一名灵活的运动计划者,该计划量身定制了灵巧和全身锻炼任务。我们的计划者可以为增强学习算法创建可用的演示,从而消除了对额外的培训管道复杂性的需求。使用这种方法,我们可以有效地学习复杂的操纵任务的政策,仅传统的强化学习只会取得很少的进步。此外,我们证明了学习的政策可以转移到真正的机器人系统中,以解决复杂的灵巧操纵任务。项目网站:https://jacta-manipulation.github.io/
根据国际纯化学和应用化学联合(IUPAC),肽是小蛋白,大小在2至50个氨基酸残基之间。它们在整个进化范围内无处不在,从而实现了各种功能,从简单生物的免疫系统效应子到高脊椎动物的信号传导或神经调节剂。按照自然的例子,肽在各个领域都出现了。一个特别相关的领域是在药物发现中,为面对抗生素耐药微生物的出现提供了替代方案。肽在其他领域(例如食品行业)也很普遍,它们可以用作食品添加剂,以增强营养特征或有助于食品保存。此外,肽越来越多地用于化妆品中。此外,肽在基础研究和应用研究中都可以作为有价值的工具,从而促进了对特定活动机制的探索以及对特定活动的验证以及其他各种应用。尽管与其他生物活性分子相比,由于其多功能性,肽与其他生物活性分子相比存在某些局限性和缺点,但在研究以及应用和发育领域中仍然是焦点。在本报告中,我们概述了合成肽的广泛应用景观,并介绍了跨不同领域内部开发的示例,其中包括有关获得的方法和结果的摘要。
单细胞RNA测序(SCRNA-SEQ)在单细胞水平上对全转录组基因表达提供了前所未有的见解。细胞聚类长期以来在SCRNA-SEQ数据的分析中已建立,以识别具有相似表达谱的细胞组。然而,细胞聚类在技术上具有挑战性,因为原始的SCRNA-SEQ数据具有各种分析问题,包括高维度和辍学值。现有研究开发了深度学习模型,例如图形机器学习模型和基于对比度的学习模型,用于使用SCRNA-SEQ数据进行细胞聚类,并总结了将细胞聚类的无监督学习到人介入的格式中。虽然细胞聚类的进展是深刻的,但我们没有更接近找到一个简单而有效的框架来学习鲁棒聚类所需的高质量表示。在这项研究中,我们提出了SCSIMGCL,这是一个基于图形对比的学习范式的新型框架,用于图形神经网络的自我监督预处理。该框架促进了对细胞聚类至关重要的高质量表示的产生。我们的SCSIMGCL结合了细胞细胞图结构和对比度学习,以增强细胞聚类的性能。对模拟和实际SCRNA-SEQ数据集的广泛实验结果表明了所提出的SCSIMGCL的优势。此外,聚类分配分析证实了SCSIMGCL的一般适用性,包括最新的聚类算法。所提出的SCSIMGCL可以作为开发用于细胞聚类工具的从业者的强大框架。此外,消融研究和超参数分析表明,在自我监督的学习环境中,决策的鲁棒性表明了我们的网络体系结构的功效。SCSIMGCL的源代码可在https://github.com/zhangzh1328/scsimgcl上公开获得。
spirobs:对数螺旋形机器人,用于遍及尺度的多功能抓握Zhanchi Wang,1 Nikolaos M. Freris,1,3, *和XI Wei 2,** 1计算机科学技术学院,中国科学技术大学,中国,Hefei,Anhui,Anhui,Prc,Prc,230026。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。 **通信:wxi@ustc.edu.cn。 总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。 在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。 这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。 我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。 我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。 我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。 这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。**通信:wxi@ustc.edu.cn。总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。关键字柔软的机器人,对数螺旋,多尺度设计,软机器人握把介绍某些动物具有细长,灵活的附属物,范围从海马长度的几厘米和Chameleons的前尾尾巴1,2到超过一米的章鱼臂和大量的off臂和大头臂和大头脑trunks trunk trunks trunks 3,4。通过利用软材料或合规机制5-7,这是设计和构建柔软连续操作器的灵感来源。尽管机器人已经成功地重现了此类机器人系统中的柔性变形,并且在处理脆弱或不规则形状的物体8,安全的人类机器人互动任务9-11,医疗应用12,13等方面表现出了巨大潜力,但生物学示例在脱氧和敏捷性方面仍然超过了特大工程。例如,大象树干可以包裹直径为3厘米的胡萝卜,而它也可以抓住和堆叠300千克的树桩,直径超过直径14。章鱼手臂可以伸出手,并在次秒时间尺度上捕获鱼。
熵相关的相位稳定可以允许多个主元素的组成复杂的固体解决方案。最初针对金属引入了大规模混合方法,最近已扩展到离子,半导体,聚合物和低维材料。多元混合可以利用散装材料以及界面和位错的新型随机,弱有序的聚类和降水状态。许多可能的原子配置提供了发现和利用新功能的机会,并创建了新的本地对称功能,订购现象和源自配置。这打开了一个巨大的化学和结构空间,在该空间中,未知的相位状态,缺陷化学,机制和性质(一些以前被认为是互斥的)可以在一种材料中进行核对。早期的研究集中在强度,韧性,疲劳和延展性等机械性能上。本综述将焦点转向多功能性能曲线,包括电子,电化学,机械,磁性,催化,与氢相关,不散热和热量特征。破坏性的设计机会在于将其中几个功能结合在一起,从而在不牺牲其独特的机械性能的情况下渲染高渗透材料。
酿酒酵母(通常称为芽酵母)是一种单细胞真核生物,用作研究广泛的生物学过程的模型,因为其简单,快速生长和基因操纵性。此外,它也是一种无价的工业微生物,用于生产面包,啤酒和药品。为了进一步使该器官适合各种应用,全球一组科学家启动了合成酵母基因组项目(SC2.0项目),以通过设计师染色体为其提供基因组大修。1通过实施众多故意修改,SC2.0项目试图调查与染色体特性,基因组组织,基因组功能和进化有关的许多原本具有挑战性和基本问题。
CRISPR 基因编辑提供了前所未有的基因组和转录组控制,可精确调节细胞功能和表型。然而,将必要的 CRISPR 成分递送至治疗相关的细胞类型且不产生细胞毒性或意外副作用仍然具有挑战性。病毒载体存在基因组整合和免疫原性的风险,而非病毒递送系统难以适应不同的 CRISPR 载体,而且许多系统具有高度的细胞毒性。精氨酸-丙氨酸-亮氨酸-丙氨酸 (RALA) 细胞穿透肽是一种两亲性肽,它通过与带负电荷的分子的静电相互作用自组装成纳米颗粒,然后将它们递送到细胞膜上。与其他非病毒方法相比,该系统已用于将 DNA、RNA 和小阴离子分子递送至原代细胞,且细胞毒性较低。鉴于 RALA 的低细胞毒性、多功能性和有竞争力的转染率,我们旨在将这种肽建立为一种新的 CRISPR 递送系统,适用于各种分子格式,适用于不同的编辑模式。我们报告称,RALA 能够有效地封装 DNA、RNA 和核糖核酸蛋白 (RNP) 格式的 CRISPR 并将其递送至原代间充质干细胞 (MSC)。RALA 与市售试剂之间的比较表明,其细胞活力更佳,可导致更多的转染细胞并维持细胞增殖能力。然后,我们使用 RALA 肽将报告基因敲入和敲除到 MSC 基因组中,以及转录激活治疗相关基因。总之,我们将 RALA 确立为一种强大的工具,可以更安全有效地以多种货物格式递送 CRISPR 机制,用于广泛的基因编辑策略。
2D半导体可以推动量子科学和技术的进步。但是,它们应该没有任何污染。同样,相邻层及其电子特性的晶体学排序和耦合应具有良好的控制,可调且可扩展。在这里,这些挑战是通过一种新方法来解决的,该方法结合了分子束外延和原位带工程在石墨烯上半导体硒化(GASE)的超高真空中。通过电子差异,扫描探针显微镜和角度分辨的光电子光谱法表明,在层平面中与基础与石墨烯的下层晶格相对的原子研究表明,GASE的原子薄层对齐。GASE/石墨烯异质结构(称为2semgraphene)具有GASE的中心对称性(组对称性D 3D)多晶型物,GASE/Chapeene界面处的电荷偶极子,以及可通过层厚度调谐的带结构。新开发的可伸缩2秒封装用于光学传感器,该传感器利用光活动Gase层和与石墨烯通道的接口处的内置电势。此概念证明具有进一步的进步和设备体系结构,将2semgraphene作为功能构建块。
parpi目前是几十年来治疗卵巢癌的最重要突破,并且已融入了卵巢癌的初始维持疗法中。然而,导致PARPI耐药性的机制仍然没有核定。我们的研究旨在筛选新的目标,以更好地预测对PARPI的耐药性并探索潜在机制。在这里,我们对TCGA卵巢癌队列中的铂敏感和抗铂抗性基团之间的差异表达基因进行了比较分析。分析表明,与TCGA-ov队列中抗铂的个体相比,LNCRNA Part1在铂敏感的患者中得到了高度表达,并在GEO数据集和Qilu医院队列中进一步验证。此外,部分1的上调与卵巢癌的有利预后正相关。此外,体外和体内实验表明,部分1抑制对顺铂和PARP抑制剂的耐药性并促进了细胞衰老。衰老细胞对化学疗法更具耐药性。RNA反义纯化和RNA免疫沉淀测定法显示了Part1和PHB2(一种至关重要的线粒体受体)之间的相互作用。敲低部分可以促进PHB2的降解,损害线粒体并导致细胞衰老。 救援分析表明,PHB2的过表达明显降低了对PARPI的耐药性和由部分1敲低引起的细胞衰老。 PDX模型被用于进一步确认发现。敲低部分可以促进PHB2的降解,损害线粒体并导致细胞衰老。救援分析表明,PHB2的过表达明显降低了对PARPI的耐药性和由部分1敲低引起的细胞衰老。PDX模型被用于进一步确认发现。总的来说,我们的研究表明,lncRNA Part1有可能成为逆转parpi抗性并改善卵巢癌预后的新颖目标。