摘要 灵敏且稳健的视网膜功能结果测量对于老年性黄斑变性 (AMD) 的临床试验至关重要。最近的一项发展是实施人工智能 (AI),根据多模态成像的结果推断心理物理检查的结果。我们对 PubMed 和 Web of Science 等中引用的当前文献进行了审查,关键词为“人工智能”和“机器学习”,结合“视野测量”、“最佳矫正视力 (BCVA)”、“视网膜功能”和“老年性黄斑变性”。到目前为止,基于 AI 的结构功能相关性已被用于推断常规视野、眼底控制视野和视网膜电图数据,以及 BCVA 和患者报告结果测量 (PROM)。在新生血管性 AMD 中,BCVA 推断(以下称为推断 BCVA)可以估计 BCVA 结果,其均方根误差约为 7 – 11 个字母,与实际视力评估的准确性相当。此外,基于 AI 的结构功能相关性可以成功推断眼底控制视野 (FCP) 结果,包括中间视觉以及暗适应 (DA) 青色和红色测试(以下称为推断灵敏度)。可以通过添加简短的 FCP 检查来增强推断灵敏度的准确性,并且对于中间视觉、DA 青色和 DA 红色测试,平均绝对误差 (MAE) 可达到 ~3 – 5 dB。基于多模态成像的推断 BCVA 和推断视网膜灵敏度可被视为未来介入临床试验的准功能替代终点。
2 莫菲尔兹眼科医院 NHS 基金会信托,162 City Rd, London EC1V 2PD, 英国 3 伦敦大学学院,眼科研究所,11-43 Bath St, London EC1V 9EL London, 英国 4 多希尼眼科研究所,多希尼图像阅读中心,加州大学洛杉矶分校大卫格芬医学院,150 N Orange Grove Blvd. Pasadena, CA, 美国 5 巴塞尔分子与临床眼科研究所,Mittlere Strasse 91, CH- 4031 Basel, 瑞士 6 开普勒大学诊所眼科部,Krankenhausstr. 9, 4021 林茨,奥地利 * Michaelides 教授和 Strauss 博士作为共同最后作者做出了同等贡献 通讯作者:Rupert W. Strauss 格拉茨医科大学眼科系 Auenbruggerplatz 4 8036 格拉茨,奥地利 电话:+43576808373669 电子邮件:r.strauss@medunigraz.at 传真:+4357680831048 第二通讯作者:Michel Michaelides 伦敦大学学院,眼科研究所 11-43 Bath Street London EC1V 9EL,英国 电子邮件:michel.michaelides@ucl.ac.uk
A EISAI Inc.,神经病学业务集团,100 Tice Blvd,Woodcliff Lake,NJ 07677,美国b Sorbonne University b Sorbonne University,Grc n°21,阿尔茨海默氏症精密医学(APM),APM,Pitié-Salpêtrière医院,Boulevard del'Hôpital,F-75013关于认知神经病学和阿尔茨海默氏病,Feinberg医学院,西北大学,芝加哥,芝加哥,美国伊利诺伊州芝加哥市D ku Leuven神经科学系,比利时E脑与疾病研究中心,VIB,VIB(Flanders for flanders forection of Biuven of Biuven of in Colucation of Biuven of Lenturn of Lenturn of Lenthistia神经科学和RETA LILLA WESTON实验室,UCL皇后广场神经病学研究所,伦敦,英国H代谢生物化学中心(BMC),Ludwig-Maximilians-University univerity Munich,81377 Iniuroscience i Municianty i Munich i Muniche,Iniuroscience i Munich y neuroscience,Unyucient,Uniuctiut Newerston。 Neurosciences NV,TechnologiePark 4,9052,根特,比利时。k神经药理学实验室,意大利罗马Ebri Rita Levi-Montalcini基金会。l意大利罗马托尔加塔大学生物学系药学院。m神经康复科学系,卡萨·库拉·波利克利科(Casa Cura Policlinico),意大利米兰,意大利n研究与发展部,奇斯·法拉西蒂(Chiesi farmaceutici)英国剑桥大学的药物发现研究所R Janssen Research and Development,Janssen Pharmaceutica N.V.,比利时BEERSE,比利时的Spidemiologicy and Biostatistics and Sidifational Health系,McGill University,Montreal,QC,QC,QC,加拿大T Brain&Spine Institute(ICM),INSERM U 1127,cn.255, L'Hôpital,F-75013,巴黎,法国U Eisai Co.
社会昆虫在性别和种姓之间表现出极端的表型差异,即使潜在的基因组几乎相同。表观遗传过程已被提出是介导这些表型差异的可能机制。使用皇后区,男性和生殖女性工人的整个基因组纤维纤维测序,我们表征了大黄蜂炸弹式地面的性别和种姓特异性甲基。我们已经确定了可能影响性别和种姓表型差异的组蛋白修饰过程中DNA甲基化的潜在作用。我们还发现差异化甲基化基因通常显示出低水平的DNA甲基化,这可能暗示了介导转录可塑性中低甲基化基因的单独功能,这与通常参与家政功能的高度甲基化基因不同。我们还使用了同一皇后和男性的整个基因组重新测序,研究了潜在的基因组与甲基化合体之间的关系。我们发现DNA甲基化富含零折的位点。我们建议DNA甲基化可能在这些位点起到靶向诱变作用,从而通过非同义基因组中的非同义变化提供了底物。但是,我们在样品中没有看到DNA甲基化与阳性选择速率之间的任何关系。为了充分评估自适应过程中DNA甲基化的可能作用,需要使用自然人群数据进行特定设计的研究。
神经退行性疾病是使人衰弱的状况,损害了患者的生活质量,代表着社会的巨大社会经济负担。虽然这些脑部疾病的根源在于常染色体遗传,但这些神经病理学中大多数的起源被熟悉。同样,解释脑功能的逐渐丧失的细胞和细胞底物也有待充分描述。的确,对脑神经变性的研究导致了一幅复杂的图像,由无数的变化过程组成,包括脑生物能骨损坏,广泛的神经炎症和信号通路的异常活性。在这种情况下,几项研究表明,内源性大麻素系统(ECS)及其主要信号枢纽,1型大麻素(CB1)受体在各种神经退行性疾病中改变了。但是,其中一些数据是冲突或描述不佳的。在这篇综述中,我们总结了三种代表性的脑疾病,阿尔茨海默氏症,帕金森氏症和亨廷顿疾病中EC和CB1受体信号的改变的发现,我们讨论了这些研究在理解Neuro脱发开发和进展中的相关性,并特别关注心血管素。值得注意的是,对神经退行性中EC的缺陷的分析需要更多的研究,因为我们对ECS功能的概念理解在过去几年中迅速发展,现在包括胶质细胞和亚细胞特异性CB1受体信号传导作为脑功能的关键参与者。
1工程地质,基地和基金会,唐州立技术大学,344003俄罗斯Rostov-on-Don; au-geen@mail.ru 2独特的建筑与建筑工程系,唐州技术大学,344003,俄罗斯Rostov-on-Don; sergej.stelmax@mail.ru(s.a.s.); lrm@aaanet.ru(L.R.M.); chernila_a@mail.ru(A.C。); diana.elshaeva@yandex.ru(D.E。)3唐州立技术大学道路和运输系统学院运输系统部,俄罗斯344003 Rostov-on-Don,4 don State技术大学供水和下水道部,俄罗斯344003 Rostov-on-Don,俄罗斯; Arpis-2006@mail.ru 5部门硬件和软件工程,唐州技术大学,344003俄罗斯Rostov-on-Don; beskna@yandex.ru *通信:besk-an@yandex.ru;电话。 : +7-86327384543唐州立技术大学道路和运输系统学院运输系统部,俄罗斯344003 Rostov-on-Don,4 don State技术大学供水和下水道部,俄罗斯344003 Rostov-on-Don,俄罗斯; Arpis-2006@mail.ru 5部门硬件和软件工程,唐州技术大学,344003俄罗斯Rostov-on-Don; beskna@yandex.ru *通信:besk-an@yandex.ru;电话。: +7-8632738454
线粒体都存在于除成熟的红细胞外的所有哺乳动物细胞中。线粒体由几种用于葡萄糖,脂肪酸,氨基酸和生物能途径的代谢途径,用于ATP合成,膜电位和活性氧的产生。在肝脏中,肝线粒体在肝脂肪变性中起关键作用,因为线粒体代谢产生乙酰辅酶A乙酰辅酶A,这是合成脂质和胆固醇的基础。线粒体内膜不可渗透代谢物,还原等效物以及磷酸盐和硫酸盐等小分子。因此,线粒体穿梭和载体起着这些代谢产物和分子在整个膜上的流入和外排的途径。这些班车和线粒体酶的信号调节在协调线粒体代谢以适应肝脏代谢应激中代谢途径的胞质部分方面起着关键作用。有趣的是,线粒体蛋白SH3结合蛋白5(SAB/ SH3BP5)和C-JUN N末端激酶(JNK)的相互作用在JNK持续激活JNK和磷酸化 - JNK(P-JNK)介导的Lipogenitication的激活途径中的持续激活中是关键作用。SAB的敲除或敲除可以防止或逆转肝脏脂肪变性,炎症和纤维化,以及改善的代谢不耐受和能量消耗。此外,阻塞SAB肽可防止棕榈酸诱导的P-JNK与SAB的相互作用并抑制线粒体生物能力,这意味着P-JNK对线粒体代谢的影响。本综述的重点是在代谢胁迫条件下线粒体代谢产物的流动以及线粒体和线粒体应激信号在肝脂肪变性中的贡献。
总结多发性硬化症是中枢神经系统的脱胚,自身免疫性和慢性炎症性疾病,其特征是脱髓鞘和随后因轴突丧失引起的神经元损害的神经变性。 div>目前,它仍然是一种未知的病因疾病,影响了2000万人。 div>与各种遗传和环境因素有关,这些因素增加了它们的敏感性,并且主要发生在20至40岁的年龄组中。 div>为了详细说明本文,对PubMed和SagePub等数据库中可用的参考书目进行了综述。 div>原始文章,书目评论,系统评价和英文和西班牙语中的荟萃分析,目的是进行多发性硬化症评论,其背景,流行病学,临床表现,分类,诊断标准和可用治疗。 div>治疗的进步通过降低暴发的频率和严重程度改善了生活质量,但是该疾病的病因仍然不确定及其神经退行性预测的影响。 div>
摘要越来越多的证据表明,心脏代谢危险因素在阿尔茨海默氏病(AD)中起着重要作用。糖尿病,肥胖和高血压高度普遍,可以加速神经退行性,并使AD的负担持续。胰岛素抵抗和包括胰岛素降解酶的酶与AD有关,其中胰岛素的分解优先于淀粉样蛋白β。瘦素的耐药性和炎症是由白介素6(IL-6),IL-1β和肿瘤坏死因子-α的较高血浆和中枢神经系统水平证明的,是将肥胖症和AD糖尿病连接的机制。瘦素已被证明可以改善AD病理学并增强长期增强和海马依赖性认知功能。与高血压有关的肾素 - 醛固酮血管紧张素系统与AD病理学和神经毒性活性氧有关,其中血管紧张素与海马和脑皮质中的特定血管紧张素-1受体结合。本综述旨在巩固肥胖,糖尿病和高血压刺激的推定过程背后的证据,从而导致AD风险增加。我们专注于如何在临床上应用新知识以促进对AD有效治疗策略的认识。
一组患有视网膜色素变性 (RP) 的患者携带多种剪接体成分的突变,包括 PRPF8 蛋白。在这里,我们确定了小鼠 Prpf8 的两个等位基因,它们可复制或模仿 RP 患者中发现的异常 PRPF8——替代 p.Tyr2334Asn 和扩展蛋白质变体 p.Glu2331ValfsX15。表达异常 Prpf8 变体的纯合小鼠在前 2 个月内因大量颗粒细胞丢失而出现小脑进行性萎缩,而其他小脑细胞则不受影响。我们进一步表明,在两种 Prpf8-RP 小鼠品系的小脑中,一组 circRNA 均失调。为了确定使小脑对 Prpf8 突变敏感的潜在风险因素,我们在前 8 周监测了几种剪接蛋白的表达。我们观察到 WT 小脑中所有选定的剪接蛋白均下调,这与神经退化的开始相吻合。在表达突变 Prpf8 的小鼠品系中,剪接蛋白表达的减少更加明显。总之,我们提出了一个模型,其中在出生后组织成熟过程中,剪接体成分的生理性减少使细胞对异常 Prpf8 的表达敏感,随后 circRNA 的失调会引发神经元死亡。