,目的是以国际标准提供优质的高等教育。它持续寻求并采用创新方法来始终如一地提高高等教育的质量。校园充满了国际化的气氛,来自世界各地的学生。强烈鼓励有经验和学识渊博的老师培养学生。在教学和研究领域设定的VIT的全球标准使我们继续追求卓越。我们对各种国际大学的理解备忘录是我们的主要优势。他们提供了学生和教职员工的交流,并鼓励共同的研究项目,以使这些大学的互惠互利。以稳定的步骤,我们继续前进。我们期待在VIT与您会面。电子工程学院(Sense)
摘要:本研究探讨了叙事抄写Nexus的开发,叙事抄写Nexus是一种AI驱动的系统,通过利用高级机器学习(ML)模型从最小用户输入中产生沉浸式的讲故事的体验。该系统将简短的句子或一些关键字转换为结构化的叙述,该叙述通过波形复发性神经网络(WRNN)进一步增强,用于现实的音频叙事和动态视频综合的生成对抗网络(GAN),从而创建无缝的多媒体表现。已经建立了一个结构化的分析框架来自动化内容创建,研究了ML驱动的讲故事在教育和互动娱乐等领域的有效性。通过整合AI驱动的文本生成,语音综合和视觉生产,该项目展示了计算智能如何增强叙事体验并彻底改变数字内容创建。
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。
摘要:这项研究是关于在Paddleocr中实施Yolo算法和机器学习的几个方面。提及讨论了这种技术集成以及他们在实现现实世界情景中完成任务和预期使用的方式。本文通过广泛分析文献并进行故意实验来实现这一目标。在本文中还捕获了有关算法有效性和挑战的见解。当代计算机视觉系统利用Yolo(您只看一次)和Paddleocr等有效的机器学习方法在几乎每个工业领域都扩展了。本文涉及这些算法在广泛的程序中的整合以及对实际领域的结果影响。本文对最新文献和实验分析进行了系统性阅读,以提出其用法的这一重要方面,未来的挑战及其前景。关键字:Yolo算法,Paddleocr,机器学习,对象检测,光学特征识别,深度学习。
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA
具有20多年的传统,ImageClef基准测试仪为科学界提供了研究活动和评估多模式数据的注释,索引,分类和检索方法。Imageclef 2024与评估论坛(CLEF)[18,19]的会议和实验室集成在一起,第二版由法国格伦诺布尔大学(University of Grenoble Alpes)托管,2024年9月9日至12日,2024年9月20日。考虑到最后四个成功版的经验,Imageclef 2024将处理四个基准测试任务中的多样性,以接近单语言和跨语言信息检索系统的不同方面[14,18,19] [14,18,19] 很少。广告系列目标是多模式数据注释和检索社区以及计算机视觉,图像信息检索和数字图像处理字段的研究人员。从其成立开始,Imageclef却产生了有意义的学术影响,目前,有420个出版物对Web of Science(WOS)有3792篇引用。本文介绍了计划于2024年计划的四个任务,即:ImageClefmedical,ImageCleFrecommeding,参数的图像检索/生成和ImageCleftopicto(图1)。
Bigdan Ionescu 1,Henning M£2,Maria Drold 1,JohannesRèuckert3,Asma Ben Abacha 4,Ahmad Idrisssi-Yagir 3,Schaltic 8,Schaltic 8,System Schmidt 7,Tabea M.G.Pakull 8 , Hendrik 3 , Benjamin Bracke 3 , Christoph M. Friedrich Benjamin 11 , Benjamin 11 , Emmanuelle Esperan 11 11 , Yeuan Fu 12 , Steven A. Hicks 11 , Michael A. Riegler 13 , Andrea Stor, Andrea 13, P˚al Halvorsen 13, Maximilian Heinrich 14,
人工智能和机器学习工具(包括生成模型和深度伪造技术)的广泛使用,使得任何人都可以以最小的努力、低成本和更高的真实感令人信服地创建和/或修改媒体。这种快速发展对传统验证方法构成了重大挑战,传统验证方法可能难以跟上这些技术日益复杂化和规模化的步伐。因此,验证方法的准确性和有效性受到越来越大的压力,使消费者更容易受到错误信息的攻击和影响。人工智能生成的媒体 1 的滥用也对组织构成了重大的网络威胁,包括通过冒充公司高管和使用欺诈性通信来访问组织的网络、通信和敏感信息。其中一些威胁在之前的联合网络安全信息表 (CSI) 中有所描述:将深度伪造对组织的威胁具体化。[3] 除了这些特定的威胁之外,人们对多媒体内容固有的普遍信任正在迅速消失。因此,加强信息完整性的需求从未如此迫切。 [4] 虽然水印等其他技术也可用于媒体出处,但内容凭证(尤其是持久内容凭证)才是本报告的重点2。
关于IIITDM Kancheepuram,研讨会将由印度信息技术设计与制造学院(IIITDM Kancheepuram)的电子与通信工程部组织。这是印度政府人力资源发展部于2007年成立的技术教育和研究卓越中心。追求设计和制造业的工程教育和研究,并促进印度产品在全球市场中的竞争优势。该研究所目前提供UG,PG和Ph.D.计算机工程,电子和通信工程和机械工程计划