Mott(康涅狄格州法明顿)将利用其现有的制造和研究设施来设计、制造、涂覆和表征钛 PTL。Mott 办公空间(康涅狄格州法明顿)将成为行政和数据分析活动的场所。Nel Hydrogen(康涅狄格州沃灵顿)将负责水电解池和电池组的设计、制造、组装和测试;水电解器组件的实验室分析;以及数据处理、分析和呈现。多孔材料和粉末的原子层沉积、放大测试和材料分析将在科罗拉多州桑顿的 Forge Nano 设施中进行。康涅狄格大学(康涅狄格州斯托尔斯)将负责开发快速原位筛选方法、电解器电池的组装、测试活动、微型 CT 成像以及制造的 PTL 和膜电极组件的表征。所有设施都是为本奖项所要开展的工作类型而预先存在的专用设施。无需进行任何设施改造或获得新许可证。
纯化的组件8或旨在为TXTL机械提供必要组件的细胞裂解物。9 CFP具有比基于细胞的系统的许多优势,包括合成有毒产品的能力,10消除合成和内源性电路之间的合并,1和膜传输限制的涉及。6此外,CFP可以更精确地控制反应条件,这将其应用于原型遗传部位,6,7生物传感器的发展,10,11生物制造,5个教育意义,12,甚至建造人造细胞。13为了促进和合理化原型制作过程,CFP经常不构图一个建模步骤,该步骤可以预测不同实验场景的结果,并允许人们更深入地了解基本机制。4
HyUSPRe 项目研究在欧洲实施大规模可再生和低碳氢地下地质储存的可行性和潜力。这包括确定适合储氢的多孔储层,以及在这些储层中实施大规模储存的可行性的技术和经济评估,以支持欧洲到 2050 年实现能源净零排放。该项目将解决多孔储层储存的具体技术问题和风险,并进行经济分析,以促进有关开发潜在现场试点组合的决策过程。技术经济评估,以及环境、社会和监管方面的实施观点,将允许制定到 2050 年广泛储氢的路线图,表明大规模储氢在到 2050 年实现欧盟零排放能源系统中的作用。
金属氧化物气体传感器是流行的化学主义传感器。它们用于许多任务,包括Envi Ronmental和安全监控。一些气体感应材料具有光诱导的特性,可通过在光照射时修饰传感器的选择性和灵敏度来增强气体检测。在这里,我们介绍了高度纳米孔Cu 2 o薄膜的气体传感特性,朝向电取(第2号)和亲核(C 2 H 5 OH,NH 3)在环境温度下的气体分子,并通过可见的光照明不同颜色的光照明(红色:632 Nm,Green:530 Nm,blue,blue:468 nm)。Cu 2 O膜是通过反应性高级气体沉积(AGD)技术制造的。样品的表面和结构分析证实了混合氧化铜相的纳米多孔薄膜的沉积。Cu 2 O的气体传感性能在亲电和亲核气体暴露时表现出预期的P型半导体行为。我们的结果表明,可见光照明提供了增强的传感器响应。
锂离子电池在循环过程中改变其几何尺寸,这是一系列显微镜机制的宏观结果,包括但不限于扩散诱导的膨胀/收缩/收缩,气体进化,固体电解质相间相间相位相和颗粒的裂纹。通过数学模型预测非线性维度变化对于电池的终身预测,健康管理和非破坏性评估至关重要。在这项研究中,我们提出了一种将粉末材料弹性模型实施到多孔电极理论(PET)中的方法。通过将总体变形分解为弹性,塑料和扩散引起的部分,并使用粉末可塑性模型来描述塑料部分,该模型可以捕获由液体(DE-)插入引起的可逆厚度变化,以及由于重新安排和颗粒的稳定而导致的不可逆厚度变化。对于预测电池健康和安全性的现实世界应用,关键在于迅速解决数学方程。在这里,我们将耦合模型实施到开源软件PETLION中,以进行毫秒尺度模拟。使用从文献中收集的值,在不同条件下测试的值,与现实世界观测值相比,对计算模型进行参数化,并定性分析以发现参数输出关系。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad4f1e]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
摘要:对清洁和可持续环境的重要性以及人口和技术的快速增长的意识日益增加,这使人们强烈倾向于解决废水处理问题。这种全球关注点促使个人优先考虑废水的适当管理和净化。有机污染物非常持久,由于其破坏性影响,有必要将其从废水中清除。在过去的十年中,多孔有机聚合物(POP)由于研究人员在去除各种类型的污染物方面的有效性而引起了人们的兴趣。多孔生物聚合物似乎是流行音乐中合适的候选者。可持续的消费和环境保护,以及减少有毒化学物质的消耗,是使用生物聚合物在准备有效复合材料去除污染物的优点。与其他POP一样,含有多孔生物聚合物的复合材料可以通过吸收,膜过滤或氧化和光催化作用去除各种污染物。尽管基于多孔生物聚合物的复合材料在去除污染物时表现出相对较好的性能,但其强度不足会限制其性能。另一方面,与其他流行音乐相比,包括共价有机框架的性能较弱。因此,多孔有机生物聚合物通常用于与其他化合物的复合材料中。因此,似乎有必要研究这些复合材料的性能并研究使用复合组件的原因。这篇综述详尽地研究了使用含有多孔生物聚合物的复合材料的最新进展,以吸附剂,膜,催化剂等的形式去除有机污染物。讨论了有关在复合材料构建中使用每个组件的机理,复合功能的信息。以下内容为未来的机会提供了从生物聚合物制备多孔复合材料的愿景。
传感器。通常,气体传感器有一些基本标准和性能参数:(a)高灵敏度; (b)高选择性; (c)性能的稳定性; (d)快速响应; (e)工作温度低和(f)低功耗。召开半导体气体传感技术被广泛研究和使用。6 - 8但是,由金属氧化物组成的这种气体传感器需要高温才能运行,其中一些在高于150°C的温度下工作,以增强气体使用感应材料的化学反应性。因此,能源消耗增加,因此在日常环境条件下降低了其适用性。室温(RT)传感器的操作不需要热量,因为它们不需要热量。最近,随着低维半导体的进展,2D材料吸引了很多考虑。通过使用2D材料,可以开发出更灵敏度的低功率和高密度气体传感器。2D材料的较大表面 - 体积比使其具有高度的效率和更大的恢复效率。9,10它们具有良好的连接和半导体特征。表面修饰也可以在这些材料上由于弱范德华力而进行,这使得与0D和1D材料相比,这使得2D材料更合适。2D材料可以归类为:(a)石墨烯家族; 11(b)2D金属氧化物; 12
微凝胶的多孔结构显着影响其特性,因此,它们适合各种应用,尤其是作为组织sca of的构件。孔隙度是微凝胶 - 细胞相互作用的关键特征之一,显着增加了细胞的积累和增殖。因此,以无效的方式调整微凝胶的孔隙率很重要,但仍然具有挑战性,尤其是对于非球形微凝胶而言。这项工作提出了一种直接的程序,以使用在微凝胶聚合过程中使用所谓的共抗效应来制造复合形的聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶。因此,在停止流动过程中,反应溶液中的经典溶剂从水到水 - 乙醇混合物交换。对于制造过程中甲醇含量较高的圆柱形微凝胶,观察到更大程度的崩溃,其长宽比增加。此外,随着甲醇含量的变化而崩溃和肿胀的速度变化,表明经过修改的多孔结构,由电子显微镜显微镜确认。此外,在冷却过程中会发生微凝胶变体的肿胀模式,从而揭示其热反应是高度异质过程。这些结果表明了一种新的程序,可以通过在定位光刻聚合过程中引入共溶性效应来制造任何细长的2D形状的PNIPAM微凝胶,并具有量身定制的多孔结构和热回应性。
摘要 在本研究中,我们提出了一种新颖的冷却方案,该方案利用铜反蛋白石 (CIO) 在单相冲击喷射冷却系统中进行表面增强。我们执行计算流体动力学模拟来评估 CIO 喷射冷却器的冷却性能。我们的建模结果表明,所提出的 CIO 涂层冷却器可以显著降低平均温度并提高整个芯片表面的温度均匀性。CIO 涂层冷却器的平均努塞尔特数可达到平面喷射冷却器的 2.8 倍。然而,CIO 涂层冷却器的多孔结构会增加总压降。为了确定具有高冷却性能和低能耗的设计,我们研究了两个关键的设计因素,即入口速度和喷嘴到 CIO 的距离。我们的分析表明,增加入口速度会进一步增强热传递,但代价是高压降。另一方面,喷嘴与 CIO 之间的距离越大,压降越小,但传热系数也会降低。通过研究流阻网络,可以进一步了解喷嘴与 CIO 之间的距离的影响。此外,我们提出了一个降阶模型,可以准确捕捉所提设计的热流体特性。