记录的版本:此预印本的一个版本发表在2024年5月8日的多学科建模,实验和设计上。请参阅https://doi.org/10.1007/s41939-024-00405-7。
图 1 . (a) 以 PS- b -PEO 为模板的介孔 ZIF-8 (M- ZIF-8) 合成过程示意图。(b、c) M-ZIF-8 的 SEM 图像。(b) 中的插图显示了基于图 S1a 的粒径统计分布。(d) TEM 图像、(e) SAED 图像、(f) 暗场 TEM 图像和 EDS 映射、(g) XRD 图案、(h) SAXS 图案和 (i) M-ZIF-8 的 N 2 吸附-解吸等温线。(i) 中的插图显示孔径分布。以 (j) PS 3800 - b -PEO 5000 和 (l) PS 9500 - b -PEO 5000 为模板的 M-ZIF-8 的 SEM 图像。由 (k) PS 3800 - b -PEO 5000 和 (m) PS 9500 - b -PEO 5000 模板化的 M-ZIF-8 的 TEM 图像。比例尺:200 nm (b、c、d、f、jm);2 nm -1 (e)。
在过去的二十年中,现代智能社会见证了各种智能电动设备的广泛发展,包括可穿戴的小工具和无人机。技术进步的激增导致对可靠和高性能存储设备的需求不断增长。[1]尽管通过严格的研究和开发对电池的性能进行了显着增强,但许多电池仍然无法满足下一代储能设备的特定要求,例如灵活性,安全性和高充电率。作为具有众多优势的替代方案和有前途的候选人,超级电容器吸引了越来越多的关注。[2]纳米技术的快速演变为探索具有高功率密度和能量密度的各种超级电容器铺平了道路。其中包括利用双层机制[3]以及使用FARADIC机制的金属氧化物和基于聚合物的超级电容器的基于碳的超级电容器。[4]基于碳的超级电容器由于其高比表面积和良好的电子电导率而表现出了出色的特性。但是,由于其理论特异性低
摘要:寻求经济可持续的电催化剂来代替氧气进化反应(OER)中的关键材料(OER)是电化学转化技术的关键目标,在这种情况下,金属有机框架(MOF)作为替代的电活性材料提供了很大的希望。在这项研究中,通过在氮掺杂的石墨烯上生长量身定制的基于Ni-Fe的MOF,成功合成了一系列纳米结构的电催化剂,从而创建了名为MIL-NG-N的复合系统。它们的生长是使用分子调节剂调整的,揭示了该性质的非平凡趋势,这是调节剂数量的函数。最活跃的材料表现出了出色的OER性能,其特征在于1.47 V(vs.RHE)达到10 mA cm -2,低Tafel斜率(42 mV dec -1),稳定性超过0.1 M KOH。这种出色的性能归因于唯一的MOF架构和N掺杂石墨烯之间的协同作用,从而增强了活动位点的量和电子传输的数量。与MOF和N掺杂石墨烯的简单混合物或N掺杂石墨烯上的Fe和Ni原子的沉积相比,这些杂种材料显然表现出了明显的OER性能。
抽象的微生物在各种多孔环境中(从土壤和河床再到人类肺部和癌症组织)繁衍生息,涵盖了多个尺度和条件。局部因素的短期到长期波动会诱导时空异质性,通常会导致生理压力的环境。微生物如何反应和适应这种生物物理约束是一个积极的研究领域,在过去的几十年中,已经获得了相当大的洞察力。以细菌为重点,我们在这里回顾了无机和有机多孔环境中自组织和分散的最新进展,强调了主动相互作用和反馈的作用,从而介导了微生物生存和适应性。我们讨论了使用综合方法来提高我们对微生物在各种规模上采用的生物物理策略的理解以使多孔环境可居住的开放问题和机会。
摘要:锝-99( 99 Tc)主要以高锝酸盐( 99 TcO 4 − )形式存在,是人工核裂变产生的核废料中一种难以处理的污染物。从核废料和受污染地下水中选择性去除 99 TcO 4 − 非常复杂,因为(i)高放射性废液的酸性和复杂性;(ii)低活度储罐废物(例如汉福德的储罐废物)和萨凡纳河等地的高放射性废物的碱性环境;和(iii) 99 TcO 4 − 可能会泄漏到地下水中,由于其高流动性,有造成严重水污染的风险。本综述重点介绍先进多孔材料的最新发展,包括金属有机骨架(MOF)、共价有机骨架(COF)及其无定形对应物多孔有机聚合物(POP)。这些材料在吸附 99 TcO 4 − 和类似的氧阴离子方面表现出卓越的效果。我们全面回顾了这些阴离子与吸附剂的吸附机理,采用了宏观批量/柱实验、微观光谱分析和理论计算。最后,我们提出了对未来潜在研究方向的看法,旨在克服当前的挑战并探索该领域的新机遇。我们的目标是鼓励进一步研究开发先进的多孔材料,以有效地管理 99 TcO 4 −。关键词:核废料处理、99 TcO 4 − 去除、金属 − 有机骨架、共价有机骨架、有机聚合物■ 介绍
多孔介质中多相流体动力学的数值模拟对于地球地下的许多能量和环境应用至关重要。数据驱动的次要模型为高保真数字模拟器提供了计算廉价的替代方案。虽然常用的卷积神经网络(CNN)在近似部分微分方程解决方案方面具有强大的功能,但CNN处理不规则和非结构化的模拟网格仍然具有挑战性。然而,地球地下的模拟模型通常涉及与复杂的网格网格的非结构化网格,从而限制了CNN的应用。为了应对这一挑战,我们基于图形卷积网络(GCN)构建了替代模型,以近似多孔介质中多相流和传输过程的空间 - 周期解。我们提出了一种适合耦合PDE系统双曲线特征的新GCN体系结构,以更好地捕获传输动力学。2D异质测试案例的结果表明,我们的替代物以高精度预测压力和饱和状态的演变,并且预测的推出对于多个时间步中仍然稳定。此外,基于GCN的模型可以很好地推广到训练数据集中看不见的不规则域几何和非结构化网格。
本文提出了一种直接而有趣的方法,用于设计宽带宽度,轻巧和可调电磁波(EMW)吸收材料。通过燃烧实验从“法老的蛇”中汲取灵感,生物质碳源和蔗糖用于制造Fe/Fe 3 O 4 @porous Carbon(PC)复合材料。随后,应用高温钙化以增强材料的Mi Crowave吸收特性。准备好的复合材料表现出令人印象深刻的6.62 GHz有效带宽,并且在匹配的厚度为2.2 mm的情况下,具有-51.54 dB的出色吸收能力。此外,通过调整磁性颗粒的含量并控制复合材料的厚度,可以实现C,X和KU频段的全面覆盖范围。出色的性能表明,合成的Fe/Fe 3 O 4 @pc多孔材料对电磁波吸收的应用具有重要潜力。它为获取吸收宽带吸收材料的新颖,直接且具有成本效益的方法打开了。
我们研究了使用分子动力学(MD)和有限元仿真的空间排除极限的密集流体通过纳米多孔膜的运输。仿真结果表明,对于简单的流体,桑普森流的偏差是滑动和有限原子尺寸效应之间竞争的结果。后者通过引入有效的孔径以及有效的膜厚度来表现出来。我们提出了一个解释所有这些因素的膜渗透性的分析模型。我们还展示了如何修改该模型以描述低分子量芳族烃在空间极限下跨这些膜的转运。通过Lennard-Jones流体渗透到单层和多层石墨烯膜的Lennard-Jones流体以及低分子量有机液体渗透到单层石墨烯膜的MD模拟进行了广泛的验证。
在加利福尼亚能源委员会的电力计划投资费用(EPIC)资助的项目中,Sepion Technologies成功地将其聚合物膜涂层电池分离器扩展到了加利福尼亚州埃默里维尔的低率初始生产,从而提高了加利福尼亚州将加利福尼亚发展到美国国内锂电池制造中心的愿景。电池分离器是电池的关键部分 - 它们是延长电池寿命的主要机制,因此可以反复充电和放电。分离器确保只允许电池的某些部分在充电和排放时在正端和负端之间来回移动。Sepion的聚合物膜平台最初是由劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laboratory)的科学家提出的,并开发了Sepion Technologies科学家和工程师的商业应用,可实现下一代电极技术在利用当今利用Li-ION电池电池制造的锂电池中的应用。该技术可直接替换最先进的电池分离器,使电池开发人员和汽车制造商可以将电动汽车(EV)安全增加40%,并将EV电池的前期成本降低15%($/kWh),将两个主要障碍降低到大规模EV驾驶 - EV驾驶范围和EV范围和EV成本。