所有固定状态锂金属电池(ASSLB)由于其高能量密度和高安全性而引起了人们的兴趣。然而,由于对机制的理解不足,LI树突生长和高界面耐药性仍然具有挑战性。在这里,我们开发了两种类型的多孔菌丝中间层(Li 7 N 2 I –碳纳米管和Li 7 N 2 I – Mg),以使Li能够在Li/Interlayer界面处的LI板,并可逆地渗透到多孔的层中。实验和仿真结果表明,岩石性,电子和离子电导率以及层间的孔隙率的平衡是以高容量稳定的LI板板/剥离的关键促进器。一个微调的LI 7 N 2 I –碳纳米管中间层使LI/LNI/LI对称细胞在25°C时在4.0 mAh cm -2下实现4.0 mA cm -2的高临界电流密度; the Li 7 N 2 I–Mg interlayer enables a Li 4 SiO 4 @LiNi 0.8 Mn 0.1 Co 0.1 O 2 /Li 6 PS 5 Cl/20 µm-Li full cell to achieve an areal capacity of 2.2 mAh cm −2 , maintaining 82.4% capacity retention after 350 cycles at 60 °C at a rate of 0.5 C. The interlayer design principle opens opportunities to develop safe and high energy ASSLBs.
用钢制造的储罐传统上受到各种油漆的保护。环氧树脂和/或聚氨酯主要是:•环氧 - 丙氨甲烷分子很容易受到紫外降解的影响•环氧 - 丙酰氨基甲烷是分子多孔的,具有高渗透性,可渗透到带有腐蚀性酸性和离子元素的水分。•地面储罐的外部容易遭受紫外线和腐蚀破坏:1。紫外线诱导的环氧 - 聚氨酯涂层的分子损伤,使钢直接暴露于腐蚀。2。腐蚀离子和/或酸性气体的逐渐渗透。•储罐的内部容易受到腐蚀破坏的影响:1。腐蚀离子和/或酸性气体的逐渐渗透到炼油厂大气2。在沉积物中,含有氯化物,硫酸盐和其他腐蚀性酸性溶质的水。3。微生物细菌和其他生物元素氟化®PVDF涂料:1。现场适用的环境存储1组件符合VOC的涂层2。在现有的环氧树脂或聚氨酯涂层上涂抹3。空气干燥以清除大衣4。空气干燥,100%PVDF顶部涂料CPC7650和CPC7550用于室内保护5。经过证明的腐蚀保护<75μm涂料厚度6。已证明的紫外线阻塞以保护基础环氧聚氨酯7。经过证明的水分和雨屏障8。生物细菌的验证障碍产生了腐蚀性气体
姜油树脂中主要有效成分是姜辣素和姜烯酚。姜辣素具有多种药理活性,包括抗炎、抗氧化和镇痛作用。然而,姜辣素对热敏感,在高温下会降解,这限制了其在食用生姜时的功能效果。为了克服这些限制,我们进行了姜油树脂封装工艺,以努力改善其物理和功能特性,同时增加向体内的输送量。在本研究中,封装过程采用离子凝胶化方法进行,结果为珠子的形式。海藻酸盐用作姜油树脂的包封材料。使用 FTIR、SEM 分析、崩解测试对干珠进行表征,并通过紫外可见分光光度法评估包封效率。研究结果表明,以海藻酸盐为高分子材料,CaCl2为偶联剂,采用离子凝胶法可以合成载姜油树脂的海藻酸盐珠。本研究测试的姜油树脂浓度为0.9%、0.7%、0.5%和0.3%。当姜油树脂浓度为0.7%时,包封率最高,为72.480%。表面形貌分析表明,海藻酸盐珠具有粗糙多孔的质地,海藻酸盐聚合物中有可见的褶皱。此外,干珠的崩解时间少于30分钟。
吉西他滨 (GEM) 辅助全身化疗被公认为改善切除术后胰腺癌 (PC) 患者预后的标准治疗方法;然而,化疗药物吸收不良极大地限制了该方法的应用。此外,手术部位感染和伽马变形菌诱导的 GEM 耐药性进一步降低了化疗效果并增加了复发甚至死亡的风险。在此,我们开发了一种可植入的抗菌和抗癌纤维膜 (AAFM),以良好协调的方式抑制 PC 复发。我们的 AAFM 可以通过 GEM 和聚-L-乳酸 (PLLA) 的简单共电纺丝以及随后的单宁酸 (TA) 介导的银纳米粒子 (AgNPs) 的原位生成来轻松制备。所得膜具有高度多孔的纤维形态和适当的机械性能。最重要的是,我们发现表面沉积的TA / AgNP复合物可以发挥多种治疗作用:(1)它们可以充当围栏以延长GEM扩散路线,实现持续药物释放;(2)它们可以对抗局部微环境中的病原微生物,预防感染并发症并减轻Gammaproteobacteria诱导的化疗耐药性;(3)它们可以对抗残留癌细胞,同步增强基于GEM的化疗效果。总之,我们的AAFM为增强治疗效果的综合抗癌和抗菌策略提供了概念验证,并将启发设计其他用于预防肿瘤复发的高性能植入物。
摘要:纳米药物虽然已被批准用于癌症治疗,但仍存在许多挑战,例如稳定性低、清除率快、非特异性导致脱靶毒性。立方体是一种多孔的溶致液晶纳米颗粒,已显示出作为药物输送载体的良好前景;然而,它们在体内的行为在很大程度上尚未得到充分探索,阻碍了临床转化。在这里,我们设计了基于空间群 Im 3 m 的立方体,其中装载了铜乙酰丙酮作为模型药物,并且它们的表面首次通过无铜点击化学用 A ffi mer 蛋白进行功能化,以主动靶向 LS174T 结直肠癌细胞上过表达的癌胚抗原。与非靶向立方体不同,Affimer标记的立方体不仅在体外(2D单层细胞培养和3D球体模型)而且在小鼠结直肠癌异种移植体内都表现出在癌细胞中比在正常细胞中优先积累,同时在其他重要器官中表现出低非特异性吸收和毒性。靶向递送后,癌性球体与非癌细胞相比具有最多的细胞死亡率。与肝脏、肾脏和其他重要器官相比,接受靶向载药立方体的异种移植瘤在肿瘤组织中的药物积累高出5-7倍,肿瘤生长显著减少,与非靶向组相比存活率增加。这项工作包含首次对Affimer靶向立方体作为癌症治疗的彻底临床前研究。关键词:A ffi 分子、立方体、脂质、溶致液晶纳米粒子、癌症、主动靶向■ 简介
在过去的几年中,用于再生医学目的的脱细胞外基质(DECM)衍生的水凝胶显着增加。内在的生物活性和免疫调节特性表明这些材料是治疗应用的有前途的候选物。迄今为止,诸如动物到动物变异之类的限制仍然阻碍了临床翻译。此外,组织源,脱细胞和溶解方案的选择会导致DECM衍生水凝胶的差异。在这种情况下,应进行水凝胶的化学,物理和生物学特性的详细表征,并注意这些特性如何受动物到动物的变异的影响。在此,我们报告了源自牛心包(DBP)的脱细胞外基质的水凝胶的详细表征。蛋白质含量,流变特性,注射性,表面微结构,体外稳定性和细胞相容性,尤其要注意动物到动物的变异性。凝胶化过程显示为热响应,并且获得的DBP水凝胶在水性培养基中是可注射的,多孔的,稳定的2周,在酶促环境中迅速降解,并且能够维持人间质间质细胞中的细胞生存能力。蛋白质组学分析的结果证明,除结构蛋白(如胶原蛋白)外,DBP水凝胶具有高度丰富的成分,保留生物活性蛋白聚糖和糖蛋白。共同完成这些结果表明,DBP水凝胶是用于再生医学应用的出色候选物。在化学成分方面,显示了动物对动物的变异性,但生物学特性不受影响,在不同批次中保持一致。
近年来,生物医学已广泛地集中在开发具有反应性行为和可自定义特性的生物学用途药物输送系统上。在药物载体中,水凝胶可以是合适的选择。由于它们具有特定的表面和结构,可以选择性地维护和运输药物到操作区域,因此它们以有利的时间范围释放,以提供更高的治疗作用。在这里,我们宣布在高内相乳液(HIPES)中宣布聚(藻酸钠(ALG)和2-羟基乙基甲基丙烯酸酯(HEMA))的共聚合物的合成,以产生高度多孔的水凝胶,以产生高度的多孔水凝胶,这些水凝胶已发育为化学疗法药物额肌蛋白(Dox)。可以随着聚合物合成程序中涉及的变量而改变孔隙率的百分比。发达的珠的特征是通过傅立叶变换红外光谱(FTIR),热重分析(TGA)和扫描电子显微镜(SEM)进行表征。在37和42°C的pH 5.4和7.4中研究了体外释放研究,这表明DOX有效地掺入了多孔水凝胶中,并通过pH调节和溶胀损失过程以控制的方式释放。在合成的聚螺旋结构中存在羟基和羧酸基团,增强了所得水凝胶的pH敏感性和肿胀行为,可以选择为响应肿瘤的酸性释放药物,以应对肿瘤的酸性状况,从而为局部局部和有效的癌症治疗提供了有希望的策略和有效的癌症治疗。
开发具有更安全、更具成本效益的系统的高性能平面微电池对于为医疗植入物、微型机器人、微型传感器和物联网 (IoT) 等智能设备供电至关重要。然而,由于难以有效地将高容量活性材料加载到微电极上,目前的片上微电池在有限的设备占用空间内能量密度有限。片上微电池需要先进微电极的创新设计。这项工作引入了先进的、高度多孔的 3D 金 (Au) 支架基叉指电极 (IDE) 作为集电器,这能够有效地加载活性材料 (Zn 和聚苯胺),而不会影响整体导电性,并显著增加活性质量负载。这些基于 3D Au 支架的微电池(3D P-ZIMB)在材料加载到平面 Au IDE 上时,与传统微电池(C-ZIMB)相比,具有显著更高的能量存储性能(增强 135%)。此外,3D P-ZIMB 比大多数高性能片上微电池具有更高的面积容量(≈ 35 μ Ah cm − 2 )和面积能量(≈ 31.05 μ Wh cm − 2 ),并且它提供比高性能片上微型超级电容器高得多的面积功率(≈ 3584.35 μ W cm − 2 )。深入的事后调查显示,3D P-ZIMB 避免了材料剥落、电解质离子扩散缓慢和阳极上枝晶形成等问题,同时保持了相同的材料形貌和结构特征。因此,本研究提出了一种智能策略来提高平面微电池的电化学性能并推动片上微电池研究领域的发展。
使用间充质干细胞(MSC)的抽象细胞移植已成为修复和再生受伤或受损器官的一种有希望的方法。但是,移植后MSC的生存和保留仍然是一个挑战。因此,我们研究了MSC的共转移和脱细胞外基质(DECM)水凝胶的疗效,这些水凝胶具有高的细胞相容性和生物相容性。通过酶消化的细胞猪肝支架来制备DECM溶液。它可以在生理温度下凝胶并形成多孔的纤维微结构。MSC在没有细胞死亡的水凝胶中在三维中扩展。与二维细胞培养物相比,在水凝胶中培养的MSC表现出增加的肝细胞生长因子(HGF)和肿瘤坏死因子诱导因子诱导基因6蛋白(TSG-6)的分泌增加,这两种蛋白(TSG-6)是主要的抗炎和抗纤维化旁帕氨酸因子MSCS的主要抗纤维化和抗纤维化旁皮因子。体内实验表明,与没有水凝胶的那些相比,MSC与DEMM水凝胶的共同植入术提高了植入细胞的存活率。MSC还表现出在二丁丁素(DBTC)诱导的大鼠胰腺炎模型中改善胰岛组织炎症和纤维化的治疗作用。将DEMM水凝胶与MSC的组合使用是一种新的策略,是克服使用MSC的细胞治疗挑战的新策略,可用于治疗临床环境中的慢性炎症性疾病。
摘要:锂 - 硫硫(Li – S)电池由于其众多优势而受到了广泛的关注,包括高理论特异性能力,高能量密度,在阴极材料中的硫磺储量丰富的储量和低成本。li – s电池还面临着几个挑战,例如硫的绝缘性能,充电和排放过程中的体积膨胀,多硫化物穿梭和树突状晶体生长。在这项研究中,开发了多孔的多位多站点硅藻石的氧化石墨烯材料和泛纤维膜的复合材料,以获得多孔且高温的GO/二烷酸/多丙烯酸甲硝基硝基硝基硝基硝基硝基硝基功能分离器(GO/de/PAN),以提高LI-ss catteries的电化学性能。结果表明,使用GO/DE/PAN有助于抑制硫化锂(LPS)穿梭锂并改善分离器的电解质润湿以及电池的热稳定性。使用GO/DE/PAN电池的初始放电能力在0.2 C时高达964.7 mAh g -1,在100个周期后,可逆容量为683 mAh g -1,库仑效率为98.8%。改进的电化学性能可能归因于硅藻土的多孔结构和氧化石墨烯的分层复合材料,这些结构可以结合物理吸附和空间位点的耐药性以及化学排斥性,以抑制LPS的航天飞机效应。结果表明,go/de/pan具有在Li – S电池中应用以提高其电化学性能的巨大潜力。