背景:2022年12月,EPA发布了临时指导和方法,以支持在软,多孔表面上使用抗菌剂的功效索赔标准。细菌的方法基于针对硬性非孔表面的ASTM标准,这是“用于定量评估抗菌测试物质对抗细菌(ASTM WK78068)抗菌测试物质的疗效的新测试方法”。目的:本研究的目的是使用EPA的“评估抗菌测试物质在针对细菌的多孔表面上的功效(12/12/2022))和次氯酸钠在测试中记录测试的观察结果的功效测试。次氯酸钠与EPA微生物实验室分支备忘录中选择的活性保持一致。请注意,与EPA微生物实验室分支备忘录中使用的测试相比,进行测试是在替代浓度下进行的。Laboratory: Ecolab Method: EPA Microbiology Laboratory Branch SOP: Interim Quantitative Method for Evaluating the Efficacy of Antimicrobial Test Substances on Porous Surfaces Against Bacteria Number of Test Days: One test date (efficacy), Two test dates (controls carriers) Test Substance: Sodium Hypochlorite at 200 ppm chlorine (total chlorine confirmed via Hach kit titration) Test物质稀释剂:375 ppm AOAC硬水测试有机体:铜绿假单胞菌ATCC ATCC 15442测试生物体制备:10 ml培养物被离心并重新悬浮在5 ml的PBS中,用于乙烯基和非PVC织物在乙烯基和非PVC织物中进一步稀释1:4(100 µl + 300 µ + 300 µ + 300 µ + 300 µ + 300 µ( 3-part soil load Neutralizer: 10 mL Letheen + 0.1% Sodium Thiosulfate Carrier Dry Time: 45 minutes under vacuum in a desiccator Carrier Materials: Privacy curtain fabric -Mambo MAM34 Nights (PCF) Vinyl seating fabric -Hopsack HOP24 Fjord (VF) Non-PVC fabric -Kid BlueSky KID17 (NVF) Stainless steel (M&B, 304类型钢) - 为了比较所有载体约为1厘米圆形载体,是手工切割的研究设计:
通过纳米线阵列的毛细管上升润滑实现润滑剂耗尽的抗滑动液体注入多孔表面 Hong Huy Tran、Youngjin Kim、Céline Ternon、Michel Langlet、David Riassetto、* 和 Daeyeon Lee* Hong Huy Tran、Youngjin Kim 博士、Céline Ternon 教授、Michel Langlet 博士、David Riassetto 教授 Univ.格勒诺布尔阿尔卑斯、法国国立科学研究院、格勒诺布尔 INP(格勒诺布尔阿尔卑斯大学工程学院)、LMGP、38000 格勒诺布尔、法国 电子邮件:david.riassetto@grenoble-inp.fr Daeyeon Lee 教授 宾夕法尼亚大学化学与生物分子工程系,宾夕法尼亚州费城 19104,美国 电子邮件:daeyeon@seas.upenn.edu 关键词:液体注入表面、润滑剂消耗、润湿脊、ZnO 纳米线阵列、毛细管作用 尽管润滑剂在各种应用中都具有良好的前景,但随着时间的推移,润滑剂的消耗会带来
LIS的设计可以分为三种一般策略:湿滑的液体注入的多孔表面(SLIPS),[2,4,7]有组织物,[3,6,19,20]和聚合物刷。[21,22]滑片依赖于两个主要因素:通过匹配表面化学,并引入表面粗糙度来最大程度地提高润滑剂对表面的亲和力,从而增强了毛细管对毛细管对底物的粘附。[5]在创建此类滑动系统的技术的开发中,已经有了巨大的研究。[5,13,23–27]典型地,该设计需要多个步骤来引入表面粗糙度,表面功能化和润滑剂。到目前为止,只有很少的研究表明了单步方法中的单块制造,例如,通过电喷雾既有透明质硅烷和全氟popotherether。[28]
该中心表示,从 3 月 9 日至 8 月 31 日收集的数据显示,与传统材料相比,这种人行道可减少 13.8% 至 63.4% 的径流,平均减少约 40%。中心主任林仁扬表示,其表面温度平均比沥青低 2.5°C。林补充说,温差最大的一次出现在 7 月 26 日,当时的气温为 37.4°C,而多孔表面比沥青低 3°C。他表示,这种材料可以吸收更多的水,因为它的多孔结构允许径流渗入地下,而不是堆积在表面。他补充说,在阳光明媚的天气里,从多孔路面内部蒸发的水分有助于冷却表面和其上方的空气。“你可以把它想象成一块吸水的海绵,”林说。“径流越少,路面吸收雨水的能力就越好。”
摘要:长期植入硬膜外脑电图 (ECoG) 电极会导致硬脑膜增厚和界面部位周围纤维化增生,这对于用于监测各种神经退行性疾病的慢性神经 ECoG 记录应用是一个重大问题。本研究介绍了一种在柔性 ECoG 电极上开发光滑液体注入多孔表面 (SLIPS) 的新方法,用于慢性神经界面,具有增加细胞粘附性的优势。在演示中,电极是在聚酰亚胺 (PI) 基板上制造的,并使用铂 (Pt) 灰来创建多孔纳米锥结构以注入硅油。纳米锥和注入的光滑油层的组合产生了 SLIPS 涂层,该涂层具有低阻抗 (4.68 k Ω ) 水平,有利于神经记录应用。电化学阻抗谱和等效电路模型也显示了涂层对记录部位的影响。细胞毒性研究表明,该涂层不具有任何细胞毒性潜力;因此,它对人体植入具有生物相容性。大鼠模型的体内(急性记录)神经记录也证实,噪音水平可以显著降低(近 50%),并且有助于慢性 ECoG 记录,以实现更广泛的神经信号记录应用。
SUDS是传统管理雨水的替代方法。他们可以降低进入下水道的总水量和速度:从而降低洪水风险。正确设计时,SUDS还提供了更多的好处 - 包括增强生物多样性,改善水质和改善居民的福祉。SUDS方案可以包括以下一个或多个元素。•绿色的屋顶将种植达到屋顶水平,并已在整个自治市镇的许多地方实施。•蓝色屋顶旨在在屋顶结构中存储更多的水。•几乎每个物业都可以实施水屁股,并且可以减少水需求并提供重要的存储空间。•雨水种植者可以通过蒸散释放水。•雨花是一种排空不可渗透表面的方式,并且经常在公共领域实施。可以将水存储并连接回下水道网络。•池塘可以作为SUDS计划的一部分提供额外的生物多样性。池塘被设计为具有永久性水,而盆地可以间歇性地湿润。•可渗透或多孔表面可用于模仿自然地面的径流,而不是硬铺成的表面。可以使水在有能力的地方渗入,或以低速率收集并排出下水道网络。•地面衰减箱下方可以用作最后一个度假胜地,以提供额外的存储空间,作为更宽的SUDS计划的一部分。
1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向
1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向
一种液体排斥表面,即光滑液体注入多孔表面(SLIPS),通过动态液体/液体/蒸汽接触线运动来排斥液体。[6] 所需的光滑液体必须与接触的液体介质不混溶且不会被其浸出,以避免润滑剂损失和污染。确保此类涂层的长期坚固性及其润湿性能仍然具有挑战性。[7] 因此,需要其他方法来创建具有良好液体排斥性的表面。提出了一种替代策略,即将柔性大分子刷(如 PDMS 和全氟聚醚)共价连接到光滑表面上以排斥液体。[8] 这个想法是,柔性大分子的高流动性使它们能够作为具有广泛表面张力的液体的液体状润滑层。[8c] 由于与表面的共价连接,这些分子结构不会被接触液体溶解或取代。具体而言,涂覆有PDMS刷的表面表现出优异的耐高温处理、光降解甚至刮擦性能。[8a,9] 此外,由于涂层只有几纳米厚,它们是透明的,不影响涂层表面的外观,对导热性影响也很小。PDMS刷的制备可以追溯到1970年,当时Vermeulen等人通过气相反应16小时在玻璃表面沉积了低液体粘附性的PDMS刷层。[10] 然而,从表面接枝聚合物通常基于复杂且耗时的制备程序,限制了它们在实际应用中的使用。McCarthy等人系统地研究了在表面制造PDMS刷的新策略。[11] 他们提出使用二甲基二甲氧基硅烷(DMDMS)作为单体,在硫酸作为催化剂的情况下聚合PDMS刷。 [8a] 用大量溶剂冲洗表面以去除残留的低聚物和酸,将反应溶液(包括 DMDMS、硫酸和异丙醇)干燥一段时间后,在硅(或玻璃)表面形成具有低液体粘附性的 PDMS 刷。与 McCarthy 的方法相比,我们开发了一种更简单的方法,无需催化剂即可将 PDMS 刷接枝到表面上。此外,我们还表征了 PDMS 刷在胶带剥离、超声处理、滴落滑动腐蚀、加热、紫外线降解、酸腐蚀等条件下的稳定性。McCarthy 等人仅研究了在 100°C 下加热的影响。