摘要:天然生物聚合物已成为准备生物降解食品包装的关键参与者。然而,生物聚合物通常是高度亲水性的,这在与水相互作用相关的屏障特性方面施加了限制。在这里,我们使用多层设计增强了生物基包装的屏障特性,其中每一层都显示一个互补的屏障函数。氧气,水蒸气和紫外线屏障。我们首先设计了几种包含CNF和Carnauba蜡的设计。在其中,我们在包含三层的组装中获得了低水蒸气的渗透率,即CNF/Wax/CNF,其中蜡作为连续层存在。然后,我们在几丁质纳米纤维(LPCHNF)上掺入了一层木质素纳米颗粒,以在维持紫外线的同时引入完全屏障,同时保持纤维透明度。包括CNF/Wax/LPCHNF的多层设计启用了高氧(OTR为3±1 cm 3/m 2·Day)和水蒸气(WVTR为6±1 g/m 2·天),以50%的相对湿度为50%。它也对石油穿透也有效。氧气渗透性受纤维素和几丁质纳米纤维的紧密网络的控制,而通过组装的水蒸气散析则由连续的蜡层调节。最后,我们展示了我们的完全可再生包装材料,以保存商业饼干(干粮)的质地。我们的材料显示出与原始包装相似的功能,该功能由合成聚合物组成。关键字:纤维素纳米纤维,蜡,木质素颗粒,分层生物聚合物,可持续纤维,生物基包装■简介
Hydro-PRT 为回收所有类型的塑料提供了更广泛的范围,包括柔性和刚性多层材料,这些材料目前被认为无法通过传统机械方法回收。它可以处理混合的消费后塑料,因为该工艺对有机污染物(如纸张、纸板和有机物(如食物残渣))不敏感,这意味着可回收的废塑料范围更广。
Hydro-PRT 为回收所有类型的塑料提供了更广泛的范围,包括柔性和刚性多层材料,这些材料目前被认为无法通过传统机械方法回收。它可以处理混合的消费后塑料,因为该工艺对有机污染物(如纸张、纸板和有机物(如食物残渣))不敏感,这意味着可回收的废塑料范围更广。
Hydro-PRT 为回收所有类型的塑料提供了更广泛的范围,包括柔性和刚性多层材料,这些材料目前被认为无法通过传统机械方法回收。它可以处理混合的消费后塑料,因为该工艺对有机污染物(如纸张、纸板和有机物(如食物残渣))不敏感,这意味着可回收的废塑料范围更广。
HydroPRS™ 为回收所有主要类型的塑料提供了更大的范围,包括柔性和刚性多层材料,这些材料目前被认为通过传统机械方法“不可回收”。它可以处理受污染和混合的消费后塑料,因为该工艺对有机污染物(如纸张、纸板和有机物(如食物残渣))不敏感,这意味着可回收的废塑料范围更广。
Hydroprs™提供了更高的范围,用于回收所有主要类型的塑料,包括柔性和刚性的多层材料,目前通过传统的机械方法被视为“不可算”。它可以处理被污染和混合的,消费后塑料,因为该过程对纸张,纸板和有机物等有机污染物不敏感(例如食物残留物),意味着更广泛的可回收废物塑料。
异构集成对热管理提出了多项重大挑战,涉及多个尺度,包括热点的热量提取、通过多层材料的热量传递、特定设备/材料的不同目标温度,以及向系统冷却解决方案或周围环境散热。该技术工作组 (TWG) 考虑了热管理的三个领域:• 芯片级;• 封装集成/系统级封装 (SIP)/模块级;• 系统级(仅限于电路板和服务器级)。除了上面列出的物理类别的分类外,本章还将重点从定量(尽可能)和定性的角度阐明以下内容: 具有热挑战的典型问题; 已知解决方案的冷却极限; 高级概念和研究。2.0 具有热挑战的典型问题
##电子邮件:sh315@cam.ac.uk,jaa59@cam.ac.uk抽象扭曲的双层石墨烯提供了一个理想的固态模型,可探索相关的材料属性和机会,用于各种光电应用程序,但可靠,可靠的快速,快速的扭曲角度表征仍然是一个挑战。在这里,我们引入光谱椭圆测量对比度显微镜(SECM),作为在光学共振的扭曲双层石墨烯中绘制扭曲角度障碍的工具。我们优化了椭圆角,以根据入射光的测量和计算的反射系数增强图像对比度。与Van Hove奇异性相关的光谐振与拉曼和角度分辨光电发射光谱良好相关,证实了SECM的准确性。结果强调了SECM的优势,这被证明是在大面积上表征扭曲的双层石墨烯,解锁过程,材料和设备筛选以及双层和多层材料的交叉相关测量潜力的快速,无破坏性方法。