ADR:美国存托凭证 API:美国石油协会 ASC:会计准则编纂 BtB:企业对企业 BtC:企业对消费者 CCGT:联合循环燃气轮机 CCS:碳捕获与储存 CO 2:二氧化碳 ECB:欧洲中央银行 EV:电动汽车 FEED:前端工程与设计 FID:最终投资决策 FPSO:浮式生产储存与卸油 FSRU:浮式储存及再气化装置 GHG:温室气体 IAS:国际会计准则 IFRS:国际财务报告准则 JV:合资企业 LNG:液化天然气 LPG:液化石油气 MoU:谅解备忘录 NBS:基于自然的解决方案 NGL:天然气液体 NGV:天然气汽车 NGO:非政府组织 OPEC:石油输出国组织 PLA:聚乳酸 PPA:电力购买协议 ROE:股本回报率ROACE:平均资本使用回报率 SEC:美国证券交易委员会 VCM:可变成本利润率 - 欧洲炼油
微电网是一种越来越流行的解决方案,可为响应增加的电网依赖性以及气候变化对电网操作的影响而增长。但是,在确定一组设计和操作决策以最大程度地降低长期成本或满足弹性阈值时,现有的微电网模型当前不考虑气候变化的不确定和长期影响。在本文中,我们开发了一种新型的情景生成方法,该方法解释了(i)气候变化对可变可再生能源可利用率的不确定影响,(ii)现场负载上的极端热量事件以及(iii)种群和电气化趋势对负载增长。此外,我们开发了现有的微电网设计和调度优化模型的两阶段随机编程扩展,以获得不确定性信息和气候 - 应能能源系统决策,从而最大程度地减少了长期成本。使用样本平均近似来验证我们的两个案例研究表明,所提出的方法产生了高质量的解决方案,从而增加了具有现有备份生成系统的系统,同时降低了预期的长期成本。
mxene作为一种不同的储能系统的电极材料进行了研究。实验结果表明,MXENES作为阳极材料具有出色的循环性能,尤其是在较大的电流密度下。但是,可逆能力相对较低,这是满足工业应用需求的重要障碍。这项工作通过原位方法合成了N掺杂的石墨烯样碳(NGC)插入的Ti 3 C 2 t X(NGC-Ti 3 C 2 t X)van der waals异质结构通过原位方法。所制备的NGC-TI 3 C 2 T X van der waals异质结构用作钠离子和锂离子电池电极。对于钠离子电池,在20 mA g-1的特定电流中实现305 mAh g-1的可逆特异性容量,比Ti 3 C 2 t X X X X的特定电流高2.3倍。对于锂离子电池,在20 mA g-1的特定电流下,可逆能力为400 mAh g-1,是Ti 3 C 2 t X X的1.5倍。由NGC-TI 3 C 2 T X制成的钠离子和锂离子电池都显示出高循环稳定性。理论计算还验证了NGC-TI 3 C 2 O 2系统中电池容量的显着改善,这归因于NGC边缘状态下工作离子的附加吸附。这项工作是一种创新的方式,可以合成新的范德华异质结构,并提供了一条新的途径,以显着提高电化学性能。
致: 克拉斯·克诺特先生 巴勃罗·埃尔南德斯·德科斯先生 主席 金融稳定理事会 巴塞尔银行监管委员会主席 埃里克·泰登先生 让-保罗·塞维斯先生 候任主席 巴塞尔银行监管委员会主席 国际证监会组织 法比奥·帕内塔先生 卡迈恩·迪·诺亚先生 主席 金融和企业事务主任 支付和市场基础设施委员会 经济合作与发展组织 抄送: 约翰·辛德勒先生 尼尔·埃肖先生 秘书长 金融稳定理事会 巴塞尔银行监管委员会秘书长 塔金德·辛格先生 代理秘书长 秘书处负责人 国际证监会组织 支付和市场基础设施委员会 塔拉·赖斯女士欢迎二十国集团继续在人工智能领域发挥领导作用,经济合作与发展组织(“OECD”)、金融稳定理事会(“FSB”)、国际证监会组织(“IOSCO”)、巴塞尔银行监管委员会(“BCBS”)和支付与市场基础设施委员会(“CPMI”)在合作和协调评估人工智能对资本市场的影响方面所展现出的领导力。FSB和IOSCO最近发布了2024年最新工作计划,增加了对人工智能的关注。我们期待支持这些努力,并重视金融稳定参与小组(“FSEG”)在支持监管发展(包括监督)一致性方面可能发挥的作用,因为这项技术具有跨部门的固有性质。人工智能已在金融服务业使用多年,但由于生成人工智能(“GenAI”)和预测人工智能(“PredAI”)的进步,最近人们对人工智能的关注度有所提高。随着当局在 2024 年开始就这一主题开展新的工作,包括审查潜在的金融稳定风险影响,GFMA 希望分享行业对资本市场使用人工智能和监管方法的关键考虑因素的看法。金融服务业是最早和最突出的人工智能行业之一;它“已有数十年的历史,在金融服务领域有着长期的应用。”2 多年来,公司一直使用“传统”形式的人工智能和机器学习,因此根据其现有的监管规则,制定了治理流程来监督、管理和监控其人工智能的应用。
2017 年至 2023 年期间,共对 1,221 口井进行了空中勘测,包括未退役井,这些井用于验证该技术的适用性。在退役井中,我们努力对不同类型和特征的井进行代表性采样,包括旧井、已知表面套管排气流或井筒完整性历史、过压区、H 2 S 含量、表面套管安装深度或存在裸眼废弃塞的井。如果空中勘测表明井可能存在泄漏,BCER 将进行地面检查。如果 BCER 发现泄漏井的证据或潜在证据,监管机构将通知许可证持有人进行进一步调查,如果确认存在泄漏,则进行修复。在 1,221 口空中勘测井中,有 25 口井有初步迹象表明存在甲烷泄漏。随后,通过地面检查对泄漏地点进行了检查,确认有 6 处废弃井发生泄漏(其中 3 处已测量,报告的泄漏率低于 1.0 立方米/天),10 处未发生甲烷泄漏,另外 9 处目前正在进一步调查。
参考文献:Deser,C。和A. Philips,2017年:观察性记录中十年级海面温度变化的概述。过去的全球变化杂志。Ghil,M。和合着者,2002年:气候时间序列的高级光谱方法。修订版地球。Kravtsov,S.,C。Grimm和S. Gu,2018年。最先进的气候模型中缺少的全球尺度多年代变异性。NPJ气候大气。SCI。 Wills,R.C.J.,D.S。 Battisti,K.C。 Armor,T。Schneider,C。Deser,2020年。 模式识别方法将强制响应与模型集合和观察中的内部变异性分开。 J. 气候SCI。Wills,R.C.J.,D.S。Battisti,K.C。 Armor,T。Schneider,C。Deser,2020年。 模式识别方法将强制响应与模型集合和观察中的内部变异性分开。 J. 气候Battisti,K.C。Armor,T。Schneider,C。Deser,2020年。模式识别方法将强制响应与模型集合和观察中的内部变异性分开。J.气候
该计划的这一部分确定了改善市政当局长期财政状况的目标,并指定了实现这些目标所需的当地行动,并定义了有助于衡量进度的绩效措施。1。确定目标:您是否试图实现减少支出,创收或建造储量?2。本地行动:您将如何实现目标?需要解决哪些策略更改?3。绩效指标:您将如何衡量达到目标的成功水平?样本财政改进计划可以在指南的附录A中找到。https://www.osc.ny.gov/files/local-government/publications/pdf/multiyear-financile-planning.pdf
b'Institution:卑尔根大学行政部门:计算生物学单位案例研究:进行基础研究的长生不老家时期:2012-2021期,当时涉及基础研究的工作人员被提交机构雇用:2012-2021时期发生撞击时发生:2021年:2021年。摘要的影响(指示性最大100个单词)本节应简要说明案例研究中描述了哪些特定影响。自2012年以来,自2012年以来,CBU及其基础设施集团及其前身是生物信息学技术平台,自2002年开始。该案例研究重点介绍了挪威Elixir提供的精选服务的科学和社会影响。总而言之,这三种服务中的每一个都通过使生活科学家能够更好地管理和共享数据,从而有助于提高挪威生命科学研究数据的公平水平。2。基础研究(指示性最大500个单词)本节应概述构成影响的主要研究见解或发现,并详细介绍进行了哪些研究,何时以及由谁进行。这项研究可能是多年来生产的工作,也可能是特定项目的产出。概述了提交单元的基础研究的概述(这可能与一个或多个研究成果,项目或计划有关)。在下一节中应提供对本节中描述的研究及其质量研究的特定研究输出的引用。应在本节中提供以下详细信息:与案例研究中所主张的影响有关的研究见解或发现的性质。执行时间的日期。主要研究人员的名字及其在研究时在行政部门担任的职位(研究人员在此期间加入或离开行政部门的地方,也必须说明这些日期)。有关此研究领域的任何相关关键上下文信息。由于我们在这里强调了由CBU托管的研究基础设施的影响,因此我们将概述Elixir Norway的两项关键服务和活动,而不是在2012年至2021年期间进行的研究见解和发现。1。挪威研究数据管理工具组装(2015年迄今为止)挪威研究数据管理是一个集成的电子基础设施平台,为研究数据管理生命周期的所有步骤,从数据管理计划的所有步骤,从数据管理计划中,整个分析到公平数据库中的数据分析,如下所示。 '
技术说明燃料电池有效地将燃料(例如清洁氢)的化学能转换为电力,并且是实现可持续和公平的清洁能源未来的全面解决方案组合的重要组成部分。如图5.1所示,燃料电池可以将广泛的燃料和原料转换为电能,并以热和水作为额外的共同点。它们可用于跨多个部门的各种应用,包括运输(道路和越野车,铁路,海洋,航空),主要和备用固定功率(用于行业,数据中心,商业/住宅建筑)以及用于电网的长期储能存储。此外,燃料电池技术可用于加热和发电的组合或创新的混合方法,例如三生(电力,热和氢)应用。
目标和目标氢基础设施子程序的目标是加速研发中的创新,以实现商业化和大规模采用高效耐用的清洁氢技术,重点侧重于存储,传输,分配,分配,交付和分配氢,以用于各种交付途径和最终用途。氢基础设施子程序与氢生产子程序紧密合作,以推动部署清洁氢技术所需的研发。氢基础设施是指用于传输,分布,存储和分配氢的技术,从生产点到最终用途应用。氢基础设施子计划的RD&D主要集中于降低成本并提高当今最终用途的当前氢基础设施选项的可靠性。