摘要:通过将多个微电网 (MG) 互连并形成多微电网 (MMG) 系统,可以缓解单个微电网 (MG) 的若干问题,例如电压和频率波动,这些问题主要由于可再生能源 (RES) 发电的间歇性而引起。MMG 系统可提高电力系统的可靠性和弹性,提高 RES 的利用率,并为消费者提供具有成本效益的电力。本文全面回顾了 MMG 领域的研究,总结了文献中提出的不同运营目标和约束,以实现 MMG 的高效运行。此外,还讨论了可以将 MG 互连以形成 MMG 系统的不同 MMG 架构及其特性。本文还对集中式、分散式、分布式和分层结构中 MMG 的运行和控制的不同控制策略和运营管理方法进行了最新回顾。还介绍了 MMG 系统中不同不确定性来源的分类以及提出的不确定性处理策略。最后,本文补充讨论了MMG系统的主要开放问题和未来研究方向。
海上运输对降低燃料消耗的需求日益增加,这推动了高燃料效率发电厂的使用和电源管理系统 (PMS) 的开发。目前对船上 PMS 的研究大多属于集中式,这种系统易于实施,能够收敛到全局最优解。然而,集中式技术可能存在计算负担过重和单点故障的问题。考虑到船舶未来向区域电力分配 (ZED) 发展的趋势,分布式 PMS 正成为一种替代选择。为了在高波动推进负载下实现船舶高燃料效率运行,本文开发了一种实时分布式 PMS,它可以获得与集中式 PMS 一样好的燃油经济性,但计算速度更快。分布式 PMS 以高度计算高效的方式结合了基于过滤器、基于规则和基于优化的方法,基于三层构建,不仅可以保证高燃料效率,还可以在不同航行模式甚至故障条件下保留足够的能量。通过收敛测试和多个案例研究,证明了所提出的 PMS 在收敛速度快、燃油效率高和弹性增强方面的有效性。
随着可再生能源高渗透率引起的净负荷的不确定性和变异性的增加,单个微电网(MG)的独立操作正面临着巨大的操作问题,例如高运营成本,局部可再生能源的自我消耗率低,而局部可再生能源的自我消费率低,并且加剧了峰值和山谷负载。在本文中,提出了一种用于互连多微晶(MMG)的移动能源存储系统(MYS)和基于功率交易的灵活性增强策略,考虑到不确定的可再生能源生成。混乱可以通过卡车在不同的微电网之间移动,我们使用这种时间 - 空间灵活性为MMG提供充电/放电服务。然后,由于确保在协作操作中的公平性和合理性,Aumann -Shapley是为了在MMG系统中分配了MMG系统的费用和电力交易,这是最重要的。之后,从风险规避的角度来看,未提供的预期功率(EPN)和预期功率削减(EPC)是评估不确定的可再生能源的风险措施。数值研究表明,MMG操作的混乱使柴油发电机的总运营成本减少了23.58%,风和太阳能的总网格连接量的改善增加了7.17%,总负载曲线的平滑度提高了0.92%。此外,用于MMG操作的互连系统可以使风和太阳能的总网格连接量增加6.69%,并且与未连接的系统相比,总负载曲线的平滑度提高了1.50%。
摘要 随着化石能源储量的减少和可再生能源发电容量的增加,基于分布式电源的微电网规模不断扩大。然而,更多的微电网运行数据和交易信息也会带来一些问题:需要中央管理的服务器容量是否足够、成员之间的信任危机、交易信息的透明性以及数据存储的保密性。本文利用区块链技术作为分布式数据存储技术来处理这些问题。提出一种基于区块链的多微电网双层能源交易框架,为交易市场提供去中心化交易、信息透明和各节点的互信体系。微电网内的中心节点收集下层交易市场的需求信息,并将其发送到上层多微电网交易市场以寻求能源交易。交易市场采用连续双向拍卖机制,保证节点间交易的自由和公平。提出的交易框架有效地减少了与主电网的交易量,提高了能源利用率。全面的模拟结果证明了所提出的交易框架的可行性。