摘要 - 安全的多方计算(MPC)是分布式计算方法之一,它在其中计算一个函数,超过一个以上的一方共同给出的输入,并将这些输入与该过程中涉及的各方保持私密。秘密共享中的随机化导致MPC是对隐私增强的要求;但是,大多数可用的MPC模型都使用共享和组合值的信任假设。因此,忽略了秘密共享和MPC模块中的随机化。因此,可用的MPC模型容易出现信息泄漏问题,其中模型可以揭示共享秘密的部分值。在本文中,我们提出了使用随机函数发生器作为MPC原始的第一个模型。更具体地说,我们分析了对称随机函数生成器(SRFG)的先前开发,以提供信息理论安全性,如果系统安全地与无限计算资源和时间的对手有关,则该系统被认为具有无条件安全性。此外,我们应用SRFG来消除一般MPC模型中信息泄漏的问题。通过一组实验,我们表明SRFG是一个函数生成器,可以生成具有N/ 2-私有化到N-私有规范的组合函数(逻辑门的组合)。作为MPC的主要目标是对投入的隐私保护,我们分析了SRFG属性在秘密共享和MPC中的适用性,并观察到SRFG有资格成为MPC开发中的加密原始性。我们观察到,我们基于SRFG的MPC在吞吐量方面要好得多30%,并且还显示100%的隐私达到。我们还通过其他基于随机性生成的MPC框架来衡量我们提出的基于SRFG的MPC框架的性能,并使用最先进的模型分析了比较属性。
使用战略性多目标跑道时刻分配搜索启发式方法提高航班时刻表可靠性 作者:FLORIAN B. HAFNER 理学学士,安柏瑞德航空大学,1999 硕士,安柏瑞德航空大学,2002 提交的论文部分满足中央佛罗里达大学工程与计算机科学学院工业工程与管理系统系哲学博士学位的要求 佛罗里达州奥兰多 2008 年春季学期 主要顾问:Jose Sepulveda(联合主席)Luis Rabelo(联合主席)
位于不同地点的 M 个互不信任的参与方通过某个商定的协议 R 掷一个 N 面骰子,如果第 k 方诚实遵循 R 而其他方任意偏离 R,则结果 o 的概率为 P(o),满足 | P(o)−Po|≤δ,其中,对于所有 o∈ZN={0,1,...,N−1},对于所有 k∈[M]={1,2,...,M},对于商定的整数 M、N≥2 以及商定的概率分布 P={Po}N−1o=0。这项任务称为 M 方偏向的 N 面掷骰子,或简称为掷骰子,是最通用的随机安全多方计算类型,其中所有参与方都会收到计算的输出,并且没有任何一方提供秘密输入 [1]。无偏掷骰子对应于 P o = 1 / N 的情况,对于所有 o ∈ ZN 。掷骰子协议 R
研究和药物开发生态系统中的许多障碍和挑战导致了这种历史性的进展缓慢;值得注意的是,制药公司(行业)投资和商业化新疗法的经济激励有限,以及行业与学术研究人员(学术界)之间的目标不一致,而学术研究人员推动了我们对这些疾病的科学理解和新药的临床试验。在许多情况下,决心克服这些障碍的父母和家人通过建立非营利组织(NPO)来提高认识和资助儿童癌症研究,成为变革的有力倡导者。最终,为患癌症的儿童提供新的治疗方法需要主要利益相关者(NPO、学术界和行业)之间的合作,与制定和管理儿童癌症研究和药物开发监管要求和激励措施的卫生当局密切合作。近年来,这些利益相关者之间的合作已被证明是推进儿童癌症研究的有效途径。
摘要 本文介绍了开放语音互操作性倡议(最初也称为开放语音网络的 OVON)现有多代理互操作性规范的全新扩展,该扩展已经使使用不同技术开发的 AI 代理能够使用通用的、基于自然语言的 API 或基于 NLP 的标准 API 无缝通信。本文专注于多方 AI 对话的管理,引入了新的概念,例如 Floor Manager、Convener Agent、Multi-Conversant Support 以及处理中断和未受邀请代理的机制。这些进步对于确保在多个 AI 代理需要协作、辩论或参与讨论的场景中顺畅、高效和安全的交互至关重要。本文详细阐述了这些概念并提供了实际示例,说明了它们在对话信封结构中的实现。
半量子隐私比较(SQPC)的目标是利用少量的量子能力对隐私信息进行平等性比较。近年来,半量子隐私比较协议的研究取得了一些成果,但大多数SQPC协议仅能比较双方的隐私信息,多方SQPC协议的研究还很少。当参与者数量超过两个时,协议需要执行多次。因此,提出了一种基于最大纠缠GHZ型态的多方半量子隐私比较协议,只需执行一次协议即可比较n方的平等性。而且参与者的加密信息不通过经典信道传输,提高了协议的安全性。最后,安全性分析表明,外部攻击、不诚实参与者攻击和半诚实TP攻击对该协议均无效。
半Quantum秘密共享(SQSS)协议作为量子安全多方计算中的基本框架,具有不需要所有用户具有复杂量子设备的优势。但是,当前的SQSS协议主要迎合两部分方案,很少有适用于多方场景的协议。此外,多方SQSS协议面临的限制,例如低量子效率和无法共享确定性的秘密信息。为了解决这一差距,本文提出了基于多粒子GHz状态的多方SQSS协议。在此协议中,量子用户可以将预定的秘密信息分配给具有有限量子capabilies的多个古典用户,并且只有通过所有经典用户之间的相互合作,才能重建正确的秘密信息。通过利用测量 - 反射操作,传输的多粒子GHz状态都可以贡献键,从而改善了传输颗粒的利用。然后,安全分析表明该协议对普遍的外部和内部威胁的弹性。此外,使用IBM Qiskit,我们进行量子电路模拟来验证协议的准确性和可行性。最后,与类似的研究相比,所提出的协议在协议可伸缩性,Qubit效率和共享消息类型方面具有优势。
作为数字身份的新兴范式,分散的身份(DID)在各个方面都具有比传统身份管理方法的优势,例如增强以用户为中心的在线在线服务并确保完整的用户自主权和控制。验证凭证(VC)技术用于促进跨多个实体的分散ID访问控制。但是,现有计划通常依赖于分布式的公钥基础,该基础也会引起挑战,例如上下文信息推论,密钥曝光和发行人数据泄漏。为了解决上述问题,本文提出了一个永久性发行人隐藏(PIH),这是首次使用签名的无VC模型(名为SLVC-DIDA)进行了多方身份验证框架。我们提出的计划避免了通过采用哈希和发行人会员证明来签署密钥的依赖,这支持通用零知识多党派进行了认证,从而消除了其他技术集成。我们采用零知识的RSA蓄能器来维护发行人集的匿名性,从而通过基于默克尔树的VC列表来保护身份属性的隐私,从而实现公众验证。通过消除对公钥基础设施(PKI)的依赖,SLVC- DIDA可以完全分散发行和验证DIDS。此外,我们的计划通过实施零知识发行者集和VC列表来确保PIH,从而有效地减轻了关键泄漏和上下文推理攻击的风险。我们的实验进一步评估了SLVC-DIDA的有效性和实用性。
基于案例研究:每个小组将对一种成功重新利用的药物进行案例研究(我们总共有三个成功案例(见下文):两个小组将研究同一个成功案例,在讨论结束时交换他们的发现,然后一起向其他小组展示。)对于每个成功案例,我们都预见了一个假设情景,其中缺少重新利用过程/故事的一个概念或一些基本步骤。在您的小组内,您将集思广益,思考这个缺失的部分将如何影响重新利用项目的结果。通过研究假设情景来了解重新利用过程中缺失部分的影响和重要性,您将对药物开发/重新利用的复杂性以及导致成功或失败的因素有宝贵的见解。以下是三个基于案例的成功案例:
Alon 等人 (CRYPTO 2021) 引入了一种具有可识别中止 (MPQC-SWIA) 安全性的多方量子计算协议。但是,他们的协议只允许 MPQC 内部各方知道恶意参与者的身份。当两组人意见不一致并需要第三方(如陪审团)来验证谁是恶意方时,这就会变得有问题。鉴于量子态可能只存在于一份副本中,这个问题在量子环境中具有更重要的意义。因此,我们强调具有可公开验证的可识别中止 (PVIA) 协议的必要性,使只有经典计算能力的外部观察者能够在发生中止的情况下就恶意方的身份达成一致。然而,由于不可克隆定理以及 Mahadev (STOC 2018) 和 Chung 等人提出的先前工作,实现具有 PVIA 的 MPQC 带来了重大挑战。 (Eurocrypt 2022)用于量子计算的经典验证的协议存在缺陷。在本文中,我们获得了第一个 MPQC-PVIA 协议,该协议假设后量子无意识传输和经典广播信道。我们构建的核心组件是一种称为可审计量子认证(AQA)的新认证原语,它以压倒性的概率识别恶意发送者。此外,我们提供了第一个具有两全其美(BoBW)安全性的 MPQC 协议,该协议保证在诚实多数的情况下输出交付,并且即使多数不诚实也能在中止时保持安全。我们的两全其美 MPQC 协议在中止时也满足 PVIA。
