摘要:巨自噬(本文简称自噬)是一种复杂的分解代谢过程,其特征是形成称为自噬体的双膜囊泡。在此过程中,自噬体吞噬并将其细胞内内容物运送到溶酶体,在那里被水解酶降解。因此,自噬为维持细胞稳态提供能量和构建块,并代表一种动态循环机制。重要的是,正常细胞中自噬清除受损细胞器和聚集分子有助于预防癌症。因此,自噬功能障碍对细胞命运有重大影响,并可导致肿瘤发生。乳腺癌是全球女性中最常见的癌症,并且在所有女性癌症中死亡率最高。乳腺癌患者通常短期预后良好,但长期幸存者常常会出现复发。这种现象可能是由于乳腺癌肿瘤的高度异质性导致乳腺肿瘤难以靶向。本综述重点介绍乳腺癌发生过程中的自噬机制,并阐明自噬在侵袭性乳腺癌细胞特征(如迁移、侵袭和治疗耐药性)中的作用。
详细的跟踪数据对于理解动物行为背后的复杂机制至关重要。在这里,我们提供了一个全面的数据集,其中包含来自105个遗传学菌株的30,000多个果蝇Melanogaster个体的行为电影和轨迹,其中包括果蝇基因参考面板的104种野生型菌株以及一个视力障碍的突变体。在15分钟的会议期间收集了由遗传背景,性别和社会环境分类的这些数据,包括五分钟的重复迫在眉睫的刺激,以引起恐惧反应。此外,我们的实验设计将小组实验与随机组合的菌株对结合,以研究小组成员对行为动力学的协同作用。除了对运动,恐惧反应和社交相互作用的遗传因素进行详细分析之外,该数据集提供了一个独特的机会来检查遗传相同果蝇内的个体行为变异性。通过在不同的遗传和环境环境中捕获各种各样的行为,这些数据是促进我们对遗传,个性和群体相互作用如何影响动物行为的理解的宝贵资源。
小胶质细胞是中枢神经系统(CNS)的常驻免疫细胞。小胶质细胞起源于早期胚胎阶段的蛋黄囊中的红细胞祖细胞,然后这些祖细胞在发育过程中通过广泛的迁移和增殖来殖民中枢神经系统。小胶质细胞占成年大脑中所有细胞的10%,而胚胎大脑中这些细胞的比例仅为0.5-1.0%。尽管如此,发育中的大脑中的小胶质细胞通过扩展芬膜虫在结构内广泛移动其细胞体。因此,它们可以与周围细胞相互作用,例如神经谱系细胞和血管结构的细胞。这种活跃的小胶质细胞运动性表明胚胎小胶质细胞在大脑发育中起关键作用。的确,最近越来越多的证据揭示了胚胎阶段的小胶质细胞功能。例如,小胶质细胞控制神经干细胞的分化,调节神经祖细胞的种群大小并调节神经元的定位和功能。此外,小胶质细胞不仅在神经谱系细胞上发挥作用,而且在血管上(例如支持血管形成和完整性)上发挥作用。本综述总结了对发展中大脑中小胶质细胞动力学和多面功能的最新进展,特别关注胚胎阶段,并讨论了其行为的基本分子机制。
粉末流速是定向能量沉积 (DED) 工艺中的一个关键参数。在典型的构建过程中,如果粉末流速仅降低 1 秒,就会影响 30 毫米的熔体轨迹。因此,即使粉末流速发生微小变化也会对构建质量产生重大影响。在这项工作中,使用离线重量测量、流动成像、现场构建数据和同轴熔池成像等多种方法量化了不同类型 316 L 钢粉末的粉末流稳定性。观察到流速振荡,与粉末料斗转盘旋转的周期性相关,其幅度足以对构建质量造成影响并可在同轴熔池成像中识别。讨论了流速变化对使用熔池成像进行闭环控制的影响。
背景:生成人工智能(Genai)的出现为重新定义人格和认知障碍的概念提供了前所未有的机会,有可能增强认知障碍者在社会中的包容和参与。目标:我们旨在探索Genai在重塑认知障碍,消除社会障碍以及促进认知障碍者社会参与方面的变革潜力。方法:这项研究是对残疾研究,人工智能(AI)伦理和计算机科学中当前文献的批判性评论,它整合了残疾理论和技术哲学的见解。分析的重点是两个关键方面:Genai作为反映社会价值观和偏见的社会镜,而Genai是认知障碍者的认知伴侣。结果:本文提出了一个理论框架,以理解Genai对认知障碍感知的影响。它引入了Genai作为一种“社会镜子”的概念,它反映并有可能放大社会偏见,并作为“认知副本”,在日常任务,社交互动和环境导航中提供个性化的帮助。本文还提出了一种新的协议,用于开发根据认知障碍个人需求量身定制的AI系统,强调用户参与,道德考虑以及解决Genai带来的机遇和挑战的需求。结论:尽管Genai具有促进认知障碍个体的包容和授权的巨大潜力,但意识到这种潜力需要改变社会态度和发展实践。本文呼吁在Genai技术的开发和实施中与残疾人社区进行跨学科的合作和密切合作伙伴关系。意识到Genai在促进认知障碍个人的包容和赋权的潜力需要多方面的方法。这涉及社会态度的转变,包括残疾人社区的需求和观点的包容性AI发展实践以及持续的跨学科合作。本文强调了谨慎行事的重要性,认识到Genai技术的变革性可能性的道德复杂性和潜在风险。
Ninjurin1 (NINJ1) 最初被鉴定为一种神经损伤诱导的粘附分子,可促进轴突生长。它最初被描述为促进神经再生并介导与神经炎症相关的单核细胞/巨噬细胞的跨内皮运输。最近的证据表明,NINJ1 介导细胞溶解死亡中的质膜破裂 (PMR)。NINJ1 的缺失或抑制可以延迟 PMR,从而减轻细胞溶解引起的炎症扩散并防止各种细胞死亡相关病理的进展,表明这些过程中存在保守的调控机制。进一步的研究阐明了 NINJ1 介导的 PMR 的结构基础和机制。虽然 NINJ1 在 PMR 中的作用已经确定,但其激活因子的身份及其在疾病中的意义仍有待充分探索。本综述综合了目前关于 NINJ1 介导的 PMR 的结构基础和机制的知识,并讨论了其在炎症疾病、神经系统疾病、癌症和血管损伤中的意义和治疗靶向潜力。
随着全球人口的增长和资源的日益匮乏,农业生产的可持续性和效率提高已成为迫切的需求。纳米技术的飞速发展为这一挑战提供了新的解决方案,特别是纳米粒子在农业中的应用,正逐渐展示出其独特的优势和广阔的前景。然而,各种纳米粒子可以以不同的方式影响植物的生长,通常通过不同的作用机制。除了对植物本身的直接影响外,它们还经常改变土壤的理化性质并调节根际微生物群落的结构。本综述重点关注纳米粒子调节植物生长的各种方式,深入研究纳米粒子与植物之间的相互作用,以及纳米粒子与土壤和微生物群落之间的相互作用。旨在为功能化纳米粒子在农业领域的应用提供全面的参考。
等,2020 年; Heraud-Farlow 等人,2017 年; Li 等,2017; Liddicoat 等人,2015 年; Mannion 等人,2014;佩斯塔尔和
摘要:数十年来,合成染料和颜色一直是色素行业的支柱。研究人员渴望找到更环境友好和无毒的替代品,因为这些合成染料对环境和人们的健康有负面影响。微生物色素可能是合成色素的替代品。微生物色素被归类为二级代谢产物,主要是由于压力条件下的代谢受损而产生的。与合成色素相比,这些色素具有鲜艳的阴影,具有营养和治疗特性。微生物颜料现在被广泛用于药品,食品,油漆和纺织工业。当前使用细菌色素作为癌症和许多其他细菌感染的药物替代品。他们日益增长的受欢迎程度是其低成本,可生物降解,非癌性和环境利益属性的结果。这篇审计文章已努力深入研究细菌颜料在食品和制药行业中的现有用途,并投射其潜在的未来应用。
Pharma Innovation Journal 2023; 12(12):1426-1438 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; 12(12):1426-1438©2023 TPI www.thepharmajournal.com收到:16-09-2023接受:21-10-2023 Modepalli Poojitha CMR Compary of CMR Pharmacy,Hyderabad,Hyderabana,Hyderabana,India Chinnabala Ramesh College of Cmr shymacy shymacy shymacy shymacy,lake kniv shiv shymacy shymacy shymacy shymacy shymacy shymacy shymacy kniv shymacy,lake kniv shymacy,lake kniv shymace CMR药学学院,海得拉巴,印度Telangana,印度Telangana,JS Rudra Bhavani CMR药学学院,海德拉巴德,印度Telangana,印度Telangana,Banoth Bhargav Naik,CMR药房学生,海德拉纳州海得拉巴德,印度Telangana,印度Telangana,PROSHAN ALI ALI ALI ALI副教授,CRMR COMMATIC,CRMR COMMAD,TELAB BROMPAR,TELAB telab tel telab tel telab tel terab tel teraub tel terab telrab, Venkata Rajesham Associate Professor, Department of Pharmacology, CMR College of Pharmacy, Hyderabad, Telangana, India T Ramarao Professor and Principal of CMR College of Pharmacy, Hyderabad, Telangana, India Corresponding Author: P Roshan Ali Associate Professor, Department of Pharmacology, CMR College of Pharmacy, Hyderabad, Telangana, India