摘要异种生物学是一种外国物质的化合物,以药物,致癌物,食物添加或其他成分的形式进入人体。输入的异物将由酶代谢,其中一种是与生理化合物代谢有关的酶细胞色素P450 monooksgenase(CYP)对人体很重要。酶的异生物代谢分为两个阶段,旨在形成更多的极性异种生物学,从而更容易消除身体。许多研究承认,代谢药物的酶和转运蛋白的遗传多态性的存在可以显着影响个体对药物反应时的变化。SNP之一(单核苷酸多态性)是最常见的遗传突变类型,它在个体内或个体之间改变了单个碱基对。数据库在SNP方面发展,因为该开发使用了生物信息学方法,因此可以在更大和较广泛的人类基因组中识别SNP在人类基因组中的鉴定。关键字:异生物学,细胞色素P450酶,SNP(单
小角度X射线张量层析成像和相关的广角X射线张量扫描仪是X射线成像技术,可以通过断层扫描重建扩展样品的各向异性散射密度。在以前的研究中,这些方法已用于成像样品,其中散射密度缓慢地取决于散射方向,通常对方向性进行建模,即质地,球形谐波扩展到'= 8或更低为止。这项研究研究了几种已建立的算法从小角度X射线张量断层扫描上的样品上的性能,其变化速度更快,这是散射方向的函数,并比较了它们的预期和达到的性能。使用具有已知纹理的AS绘制钢丝中的广角散射数据对各种算法进行了测试,以确定用于此类样品的张量断层扫描方法的可行性,并比较现有算法的性能。
摘要 本综述讨论了有机分子结晶多晶型之间的固-固相变分析。虽然活性药物成分 (API) 是综述的范围,但无论有机分子是否具有生物活性,都没有特别定义其在结晶状态下的相互作用。因此,其他小有机分子也已纳入本分析,在某些情况下也讨论了聚合物。本综述的重点是实验分析;但是,增加了计算和理论方法部分,因为这些方法变得越来越重要,并且显然有助于理解例如转变机制,因为结果可以很容易地可视化。讨论了晶体结构之间固-固相变的以下方面。讨论了涉及热力学平衡的多晶型之间的相变热力学以及与吉布斯自由能密切相关的变量温度和压力。讨论了有机结晶固体中的两种主要转变机制,即置换和协同转变。回顾了用于理解 API 不同多晶型之间的机制和热力学平衡的实验方法。本文讨论了多晶型物性的转换,并回顾了热存储和释放,因为这是固态相变的主要应用之一。限制相变对于药物产品的控制很有吸引力,本文对其进行了回顾,因为它可能有助于通过使用亚稳态相来提高 API 的生物利用度。最后,本文讨论了有机材料的二级相变,这种相变似乎很少见。可以得出的结论是,尽管人们对多晶型和相变的一般理论有了很好的理解,但它对特定分子的作用仍然难以预测。
在金属氧化物中新发现的光离子效应为功能性陶瓷应用提供了独特的机会。作者概括了最近在紫外线(UV)辐射下观察到的晶界光离子效应在辐射离子效应下,可用于散装材料并用于伽马射线(𝜸砂)检测。在室温附近,掺杂的GD掺杂CEO 2,一种多晶离子导电陶瓷,在暴露于60 Co 𝜸 -ray(1.1和1.3 MEV)时,电阻比变化≈103,离子电流的可逆响应在离子电流中可逆。这归因于在晶界处的稳态空间电荷屏障的稳态钝化,该空间电荷屏障充当虚拟电极,捕获了辐射诱导的电子,进而降低了空间电荷屏障高度,从而独家调节了陶瓷电解质中的离子载体流量。这种行为允许在低场(即<2 v cm-1)下进行显着的电响应,为廉价,敏感,低功率和可微调的固态设备铺平了道路,非常适合在刺激性(高温,压力和腐蚀性)环境中运行。此发现为便携式和/或可扩展的辐射探测器提供了机会,从而使地热钻探,小型模块化反应堆,核安全和废物管理有益。
在生长过程中,腔体压力和晶圆温度分别保持在 5.0 托和 800 o C。我们采用脉冲注入策略来调节二次成核并实现逐层生长模式。每个反应循环包括 2 分钟所有前体共注入,然后中断前体并清洗 1 分钟,循环时间为 3 分钟。通过五个生长循环获得了晶圆级多晶 MoS 2 薄膜;因此,总生长时间为 15 分钟。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
1 捷克科学院物理研究所,Na Slovance 2,18221 布拉格 8,捷克共和国 2 查理大学数学与物理学院,V Holesovickach 2,布拉格,CZ18000,捷克共和国 3 伯明翰大学物理与天文学院,伯明翰 B152TT,英国 4 国立微电子中心(IMB-CNM,CSIC),UAB-Bellaterra 校区,08193 巴塞罗那,西班牙 5 粒子物理研究所,IFIC/CSIC-UV,C/Catedrático José Beltrán 2,E-46980 帕特尔纳,瓦伦西亚,西班牙 6 约瑟夫·斯特凡研究所实验粒子物理系,Jamova 39,SI-1000 卢布尔雅那,斯洛文尼亚 7 圣克鲁斯大学粒子物理研究所 (SCIPP)加利福尼亚大学圣克鲁斯分校,CA 95064,美国 8 TRIUMF,4004 Wesbrook Mall,温哥华,BC V6T 2A3,加拿大 9 西蒙弗雷泽大学物理系,8888 University Drive,本那比,BC V5A 1S6,加拿大 10 筑波大学纯粹与应用科学研究所,1-1-1 Tennodai,筑波,茨城 305-8571,日本 11 多伦多大学物理系,60 Saint George St.,多伦多,安大略省 M5S1A7,加拿大 12 高能加速器研究组织 (KEK) 粒子与核研究所,1-1 Oho,筑波,茨城 305-0801,日本 ∗ 主要作者,电子邮件:vera.latonova@cern.ch,† 替补演讲人,电子邮件:jiri.kroll@cern.ch
抗体 - 药物缀合物(ADC)是临床癌症治疗的最重大进步之一,无论如何,它们与低药物/抗体比(DAR)(DAR),需要大量抗体和复杂化学的基本问题所困扰。提供有希望的ADC替代方案的靶向纳米医学会遭受药物泄漏和癌症特异性的折磨。在此,我们开发了一种基于抗CD44抗体 - 授生素-DM1偶联物(ACD44-AP-DM1)的智能细胞选择性纳米毒素,以对实体瘤的有效治疗。dm1在自组装过程中通过二硫键同时耦合到囊泡膜和抗CD44抗体中,并将抗CD44抗体偶尔单击地单击到多晶层表面上,从而量身定制最佳的ACD44-AP-DM1,并用5.0的5.0释放275的DARMON-DARMONS aPERINAL dARMON-dARMON-dARMON-ZERO释放和快速ductive defuct-Refuct-Ref-Ref-Ref-Rectpect-apep-ap-dm1。ACD44-AP-DM1对MDA-MB-231三重阴性乳腺癌,SMMC-7721肝细胞癌和A549非小细胞肺癌细胞具有高特异性和特殊的细胞毒性。 47.2倍超过未靶向的P-DM1。有趣的是,ACD44-AP-DM1的全身给药可显着抑制裸鼠皮下MDA-MB-231肿瘤异种移植,而肿瘤内注射可在五只小鼠中四分之四完全消除肿瘤,而不会引起毒性。这种智能细胞选择性纳米毒素已成为靶向癌症治疗的ADC的更好平台。
自组装单分子膜 (SAM) 广泛应用于有机场效应晶体管,以改变栅极氧化物的表面能、表面粗糙度、薄膜生长动力学和电表面电位,从而控制器件的工作电压。本研究使用 n 型多晶小分子半导体材料 N,N′-二辛基-3,4,9,10-苝二甲酰亚胺 (PTCDI-C8),比较了氨基官能化的 SAM 分子与纯烷基硅烷 SAMS 对有机场效应晶体管电性能的影响。为了了解氨基对电子的影响,系统地研究了含氨基官能团的数量和 SAM 分子长度的影响。虽然之前已经研究过氨基官能化的 SAM 材料,但这项研究首次能够揭示用极性氨基硅烷材料处理栅极氧化物时发生的掺杂效应的性质。通过对分子水平上的界面进行全面的理论研究,我们发现观察到的阈值电压偏移是由自由电荷引起的,这些自由电荷被 PTCDI-C8 吸引,并在那里被质子化的氨基硅烷稳定下来。这种吸引力和电压偏移可以通过改变氨基硅烷中性端链的长度来系统地调整。
本期特刊旨在促进钻石科学家和工程师之间的科学知识交流,包括多晶和单晶。因此,我们诚挚地邀请科学家和工程师发表他们关于钻石成核和生长动力学、其物理和化学性质以及它们在各个科学技术领域(工业、医学、考古学等)的实用性的最新科学、理论和实验结果。最近对单晶和多晶金刚石材料的合成和利用的研究扩大了它们在现有和未来广泛应用领域的潜在用途,包括光学和电子学,以及生物医学等。我们还相信,这些材料是当今和不久的将来在固态物理、化学和工程领域具有巨大潜力的重要材料。我们邀请您为本期晶体特刊“多晶/单晶金刚石”撰稿,以便向讨论金刚石科学、技术和应用的多学科论坛提交论文。