钙钛矿量子点 (QD) 可以通过精确控制其成分和尺寸来化学合成,覆盖整个可见光谱范围,近年来已成为一类具有高量子产率的新型发射体。此外,它们的尺寸相关量子限制可以解释某些多晶钙钛矿薄膜令人惊讶的高发射效率,由于其晶粒结构,这些薄膜可能表现为效率相当低的发射体。5,6 为了加速其发射速率并进一步提高其量子产率(这在处理单光子量子发射体时至关重要),已经实施了不同的方案。7,8 目标是利用谐振器内的场强度增强,从而实现更高的 Purcell 因子。事实上,对钙钛矿进行图案化并将其沉积在其他材料上的能力使得它们可以与各种谐振器相结合:分布式反馈布拉格反射器、9 – 12
在扫描氦显微镜 (SHeM) 中演示了一种以微米级空间分辨率测量氦原子衍射的方法,并将其应用于研究氟化锂 (LiF) 晶体 (100) 平面上的微米级斑点。观察到的衍射峰的位置提供了局部晶格间距的精确测量,而紧密耦合散射计算和蒙特卡罗射线追踪模拟的组合则重现了衍射强度的主要变化。随后,通过在倒易空间中的不同点进行测量,衍射结果可用于增强图像对比度。结果为使用氦微衍射表征小尺度上精细或电子敏感材料的形态开辟了可能性。这包括许多在基础和技术上重要的样品,这些样品无法在传统的原子散射仪器中进行研究,例如小晶粒尺寸的剥离二维材料、多晶样品和其他不表现出长程有序的表面。
摘要:充当潜在量子门的分子多自旋系统需要微调磁相互作用以实现单自旋可寻址性和自旋量子比特的纠缠。我们在此报告一种新的单链钒基-卟啉二聚体的合成,该二聚体结晶为两种不同的伪多晶型。单晶连续波电子顺磁共振研究表明,两个倾斜且可区分的自旋中心之间存在微小但至关重要的各向同性交换相互作用 J ,其数量级为 10 -2 cm -1 。实验和 DFT 研究表明 J 值与卟啉平面倾斜角和扭曲度之间存在相关性。脉冲 EPR 分析表明,两个钒基二聚体保持了单体的相干时间。我们的结果,加上卟啉系统的蒸发性,表明这类二聚体在量子信息处理应用中极具前景。
摘要 钛合金定向能量沉积 (DED) 因其在自由成型和再制造方面的灵活性而成为一种快速发展的技术。然而,沉积过程中凝固微观组织的不确定性限制了其发展。本文提出了一种人工神经网络 (ANN) 来研究晶界倾斜角与三个致病因素(即热梯度、晶体取向和马兰戈尼效应)之间的关系。在田口实验设计下进行了一系列线材 DED、光学显微镜 (OM) 和电子背散射衍射 (EBSD) 实验,以收集 ANN 的训练和测试数据。与传统的微观结构模拟方法相比,本文开发的策略和 ANN 模型被证明是一种描述 DED 制备 Ti6Al4V 中竞争性晶粒生长行为的有效方法。它们可用于实现定量微观结构模拟,并扩展到其他多晶材料凝固过程。
使用ARC熔化方法合成多晶Zr 5 Al 4。粉末X射线衍射证实了具有晶格参数的Ti 5 Ga 4型(P6 3 /MCM)的先前报道的晶体结构:A = 8.4312(6)Å,C = 5.7752(8)Å。电阻率和低温磁化率研究表明,Zr 5 Al 4在2 K以下表现出超导行为。归一化的热容量在t c = 1.82 K,ΔC/γtc = 1.41时,证实了散装超导性。Sommerfeld系数γ= 29.4 MJ mol -1 K -2和Debye温度d = 347 K,通过拟合低温热容量数据获得。电子偶联强度λEL-PH = 0.48,并且估计的上部临界场μ0H C2(0)= 1.09 t(脏极限)表明Zr 5 Al 4是弱耦合的II型超导体。第一原理计算显示费米能量附近的Van Hove奇异性存在。
摘要。摩擦学成分仅占整个航天器的一小部分,但它们通常会导致部分或完全破坏航天器的失败。空间应用中使用的机械组件必须承受极端和严重的环境条件,例如非常高或非常低的低温温度,高真空,腐蚀性元素和辐射。MOS 2是空间应用中使用最广泛的润滑材料。它具有层状结构,并在层内具有强大的共价键,同时又弱van der Wall的层间键,从而使晶体在平行于基础平面的方向上易于剪切,因此充当良好的固体润滑剂。在这项研究中,使用物理蒸气沉积(PVD)沉积了MOS 2的薄膜纳米尺度涂层。使用的PVD技术是RF磁控溅射过程。使用X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和拉曼光谱进行材料表征。根据结果,开发的MOS 2纳米涂层具有多晶结构,其基础平面垂直于底物表面。
在室温下研究了局部微观结构对多晶 René 88DT * 高温合金样品疲劳裂纹萌生和扩展的影响。在新型共振微弯曲疲劳装置中对微型样品进行了反向循环弯曲疲劳测试。通过取向映射、扫描电子显微镜和共聚焦显微镜对表面微观结构进行同时分析,可以直接对与滑移和滑移带形成、微裂纹萌生和短裂纹扩展相关的特定微观结构位置进行实验测量。观察到的潜在机制是:在具有最高分辨剪切应力的 {111} 平面上滑移,随后在定向为高剪切并经历弹性不相容的大晶粒中优先沿孪晶边界(但不在孪晶边界)萌生微裂纹,并在相邻晶粒中具有高分辨率剪切应力的 {111} 平面上裂纹连续扩展。对许多短的非扩展裂纹的分析表明裂纹在高角度晶界处停止。
摘要:原子力显微镜(AFM)是成像分子,大分子复合物和具有纳米分辨率的纳米颗粒的强大技术。但是,AFM图像被所使用的尖端的形状扭曲。如果可以通过扫描特征比尖端更明显的样品来确定尖端形状,并且可以纠正这些扭曲。在这里,我们提出了3D DNA折纸结构,作为尖端重建和图像校正的基准。我们的信托在广泛的条件下是稳定的,并且在不同高度上具有急剧的步骤,从而使可靠的尖端重建能够从几乎十个基金会中重建。DNA折纸很容易与生物学和非生物学样品编码,与多晶样品相比,尖端顶点的精度更高,并显着提高了图像确定的横向尺寸的准确性。我们的信托因此可以为广泛的应用实现准确而精确的AFM成像。关键字:原子力显微镜,AFM,DNA折纸,图像校正,尖端重建
1。在晶体,原子或分子中的引入以三维的重复模式排列,并且晶体的特性取决于成分原子或分子的化学组成。晶体的典型图像是盐或明矾等单晶的颗粒,但是许多熟悉的材料,例如金属,陶瓷和晶体聚合物,是由微晶组成的固体。这些称为多晶,与单晶相反。在某些情况下,构成材料较大材料的晶体的质地和结晶度与诸如由多晶体组成的晶体材料的强度和硬度有关。对粉末X射线衍射中晶体聚合物材料的评估大致分为小角度X射线散射(SAXS)区域的分析,对应于约1-100 nm的长周期结构,分析广角X射线散射(WAX)区域,对应于Atom-到ATOM-到ATOM-到-ATOM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM(1)(1 NM(1)(1)(1)(1)(1倍)(1倍)(1)(1倍)(1)(1倍)(1)(1)(1倍)(1)。在考虑
半导体学会(印度),注册号 -209,印度,http://www.ssi.org.in 国家热物理学会(NTPS),印度 名称列于《世界名人录》第 28 周年纪念版。 研究技能和专业知识 - 总结 19 年左右的经验,涉及重要技术电子材料(外延和多晶薄膜)的制造和特性以及设备开发:薄膜晶体管 (TFT)、非易失性存储器、发光二极管 (LED) 和光电探测器 (PD)。复合半导体纳米材料:II-VI 和 III-V(ZnO、GaN)全面的知识和专业技能 1)薄膜沉积技术:溅射、PLD、电子束蒸发器、溶胶-凝胶、ALD 和 PECVD 2)结构、光学和电学特性:XRD、AFM/SEM、TEM、PL、UV-VIS、霍尔效应等; 3)使用光刻、电感耦合等离子体反应离子刻蚀(ICP-RIE)、电子束蒸发器和剥离工艺等标准程序开发和表征 TFT、基于 TFT 的非挥发性存储器、LED 和 PD 设备;布局设计; 4)熟悉在高影响因子期刊上发表学术研究文章 研究兴趣领域:薄膜处理/纳米结构材料合成/器件制造