设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。使用机器学习(ML)引导蛋白质设计有可能通过精确导航坚固的健身景观来加速发现高性能酶。在这项工作中,我们描述了ML引导的运动,以设计Nuclease NucB,该核定是一种酶,该酶在治疗慢性伤口的酶降解生物膜,以治疗慢性伤口。在多发酶演化活动中,我们将超高通量功能筛选与ML相结合,并将其与平行的电脑内定向进化(DE)和硅内命中重组(HR)策略进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,而DE的最佳变体提高了12倍。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
我们研究非协作对话代理,这些代理需要与不同的用户进行战略对话,以确保达成有利于系统目标的共同协议。这对现有的对话代理提出了两个主要挑战:1)无法将用户特定的特性融入战略规划中,2)难以训练可以推广到不同用户的战略规划者。为了应对这些挑战,我们提出了 T RIP 来增强定制战略规划的能力,结合了用户感知的战略规划模块和基于人群的训练范式。通过在基准非协作对话任务上的实验,我们证明了 T RIP 在迎合不同用户方面的有效性。
优化酶在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们通过使用机器学习(ML)从超高通知功能屏幕中融合进化信息和实验数据来开发一种技术,用于设计蛋白质变体的活跃和多样化的蛋白质变体库。我们在多轮运动中验证了我们的方法,以优化NUCB的活性,nucB的活性,核酸酶酶在慢性伤口的治疗中应用。我们将我们的ML引导运动与维特罗定向进化(DE)和尼里科(Silico In-Silico)命中重组(HR)的平行运动进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进,并且在命中率和多样性方面表现出色。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导酶设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
人们对设计能够改变构象或改变组装状态以响应不同刺激的蛋白质产生了浓厚的兴趣,这些刺激包括配体结合、11、12 金属配位、13、14 磷酸化、15、16 和半胱氨酸氧化/还原。17、18 虽然确实存在几种此类人工多状态系统的例子,3、11–20 但设计对多种刺激作出反应的蛋白质或从单个蛋白质序列/结构中获得两种以上结构不同状态的能力却受到限制(图 1a)。21 这主要是因为大多数蛋白质设计策略都涉及实施广泛的非共价相互作用(特别是疏水堆积),以获得与深自由能最小值相对应的单一稳定结构。21–24 这种策略不仅限制了结构多样化的潜力,而且降低了所得蛋白质结构对刺激作出响应和可重构的潜力。
摘要:begomoviruses(家族双子科,begomovirus属)是DNA病毒,以循环的,持久的方式通过白色的bemisia tabaci(Gennadius)传播。由其广泛的寄主范围(超过420种植物物种),全球分布和有效的矢量传播所揭示,Begomovires具有很高的适应性。仍然,促进其适应各种宿主和载体的遗传因素仍然知之甚少。病毒基因组中的突变可能会为基本功能提供选择性优势,例如传播,复制,逃避宿主反应和宿主内运动。因此,遗传变异对病毒的进化至关重要,并且对选择压力的响应,被证明是新菌株和物种的出现,适合于多种宿主或具有独特的致病性。变异和选择的组合形成了基因组的遗传烙印。本综述着重于有助于乞emovirus及其全球蔓延的因素,为此,人们认识到了不可预见的多样性和扩散。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们描述了一项由机器学习(ML)引导的运动,以设计核酸酶NucB,核酸核酸核酸hut(一种酶)在治疗慢性伤口时应用。在多轮酶演化运动中,我们将超高通量功能筛选与ML相结合,并将其与维特罗定向进化(DE)的平行运动(DE)和硅内命中率重组(HR)进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
非洲国家对于使战略矿物的全球供应链多样化至关重要。,尽管有这种矿产潜力,但由于对政治风险,机构和立法环境疲软以及基础设施赤字的看法,非洲作为一个大陆的勘探支出水平较低。此外,利益相关者对能源过渡的期望存在明显差异。非洲政府与政策制定者以及投资者和公司之间分享了确保非洲国家真正受益于绿色商品繁荣的责任。政府必须建立有吸引力的投资环境,这是建立在确保所有利益相关者参与的强大机构上,以及资源租金的透明和负责任的分配。与主要盟友和组织的国际和地方伙伴关系对于为公司和民间社会提供“双赢”成果至关重要。这将包括有关区域价值连锁店的双边合作伙伴关系,与公司确保福利的PPP以及与消费者国家的广泛合作伙伴关系,以确保技能和知识转移。随着国际政府和公司越来越关注环境,社会和治理(ESG)标准,因此有更大的非洲确定自己的优先事项的空间。全球环境保护的推动力不应以生产者国家的社会和治理恶化为代价。
早期的家庭访问计划提供了独特的机会,可以增强父母及其婴儿或幼儿的心理健康。虽然家庭访问计划的设计和资金来源差异很大,但大多数这些计划中常见的几个功能都可以利用以满足家庭与心理健康相关的需求。这些功能之一是与家庭持续接触,这可以帮助家庭访客与父母建立信任,支持性关系;这些关系反过来又有助于将家庭保留在计划中,并从服务中受益。另一个是提供指导和指导,以促进反应迅速的育儿,并培养亲子关系,这是儿童社会情感福祉和发展的基础的条件。通过直接服务或将家庭与其他计划联系起来,他们努力帮助家庭克服与健康问题和基本需求有关的挑战,家庭访问计划也可以显着减轻父母的压力并增强家庭福祉。
比利时安特卫普大学医学与健康科学学院的合作安特卫普精神病学研究所(CAPRI),比利时安特卫普大学,比利时B科学精神病学与心理药理学研究(SINAPS)的科学计划(SINAPS) Sanit`A,Roma,意大利d精神病学系,格罗宁根大学医学中心,格罗宁根大学,格罗宁根大学,荷兰E型生物功能成像系多伦多,多伦多,多伦多,加拿大,加拿大,临床神经科学,临床和实验科学学院,南安普敦大学医学院,英国英国大学医学科学系k不列颠哥伦比亚大学生物化学与分子生物学系法国gif-sur-yvette
布朗利水库是一个受汞 (Hg) 污染的水力发电水库,具有动态水文和地球化学条件,位于美国爱达荷州的赫尔斯峡谷综合体内。鱼类中的甲基汞 (MeHg) 污染是该水库令人担忧的问题。虽然甲基汞的产生历来被归因于硫酸盐还原菌和产甲烷古菌,但携带 hgcA 基因的微生物在分类学和代谢上是多样的,驱动汞 (Hg) 甲基化的主要生物地球化学循环尚不清楚。在本研究中,在连续四年 (2016-2019) 的分层时期测量了整个布朗利水库的汞形态和氧化还原活性化合物,以确定甲基汞产生的地点和氧化还原条件。对一组样本进行了宏基因组测序,以表征具有 hgcA 的微生物群落,并确定生物地球化学循环与甲基汞产生之间的可能联系。生物地球化学概况表明,原位水柱汞甲基化是甲基汞的主要来源。这些概况与以携带 hgcA 的微生物为重点的基因组解析宏基因组学相结合,表明该系统中的甲基汞生成发生在硝酸盐或锰还原条件下,而这些条件以前被认为可以阻止汞甲基化。利用这种多学科方法,我们确定了水文年际变化对氧化还原状态、微生物代谢策略、汞甲基化剂的丰度和代谢多样性以及最终对整个水库的甲基汞浓度的连锁效应。这项工作扩展了已知的有利于产生甲基汞的条件,并表明在某些地方通过硝酸盐或锰修正来缓解汞甲基化的努力可能会失败。