抽象鱼长期以来一直被认为是一种健康食品,可为人体提供出色的营养价值。由于其易腐烂性,通常会处理鱼类以提高其保质期。在尼日利亚,鱼类吸烟是鱼类保存的最常见方法,它涉及使用传统的吸烟窑,这些窑炉的结构不佳,缺乏用于热控制的机制,通常会导致在烟熏鱼中产生多环芳烃(PAH)。这项研究评估了消费者对烟熏鱼中PAH和其他污染物的认识,并确定了影响研究区域受访者中烟熏鱼消耗的因素。采用了两阶段的抽样技术从研究区域中选择105名受访者。借助结构良好的问卷获得了数据。用于数据分析的分析技术是描述性统计和二进制logit回归模型。调查结果表明,大多数受访者是女性,已婚,平均年龄为39岁,接受了正规的教育。的发现还表明,大多数消费者都知道烟熏鱼中的PAH存在对健康有害。此外,发现发现分别以1%,5%和10%的烟熏鱼类消费量显着影响烟熏鱼的消费,从而,年龄,性别,收入,婚姻状况,口味,家庭规模,教育和香气。因此,该研究得出的结论是,研究区域的受访者对烟熏鱼中多环芳烃(PAH)和其他微生物的认识较低。
摘要 芳香性是物理学和化学中众所周知的现象,是芳香分子许多独特化学和物理性质的原因。多环芳烃稳定性的主要特征是每个 N 碳原子的 2 个 pz 轨道中的离域 π 电子云。虽然已知电子在杂化的 sp 2 轨道之间离域,但本文提出量子行走作为离域发生的机制,并得出这些分子的功能化学结构如何自然地从这种结构中产生。我们介绍了对一些苯并多环芳烃进行的计算结果,并表明基于量子行走的方法确实可以正确预测所考虑分子的反应位点和稳定顺序。
黑碳形式煤0.3至253(Wang等,2010)(Laumann等,2011)慢速热解(木材)<0.01(Zhurinsh等人2005)(Singh等,2010)木灰(3.7%C含量)16.8(Bundt等,2001)2005)(Singh等,2010)木灰(3.7%C含量)16.8(Bundt等,2001)
植物生长促进性根瘤菌(PGPR)是居住在根际的细菌,并定居于根环境。这些生物可用于改善植物的生长和在不利环境下农业生产的可持续性。根际微生物可以产生细胞外化学信号,有助于在宿主和微生物之间建立复杂的信号网络。PGPR殖民植物根,启发植物生长,并减少昆虫引起的疾病或损伤。目前已经对PGPR进行了丰富的研究工作,其中许多正在用于农作物中。pgpr可以用作在压力环境下改善植物健康和产量的生物肥料。生物施肥被认为是全球不同作物植物的主要氮来源。同样,PGPR负责增加豆类中的N-固定,促进自由生活的N-固定细菌,并改善根际中补充营养素的可用性和分布(Daniel等,2022)。他们还负责植物激素的产生,因此在植物正常生长和发育中起着至关重要的作用。PGPR降低了根际根部病原体和其他有害微生物的居民,从而促进植物的生长。微生物参与宿主植物代谢组途径的改变,从而有助于植物的全身耐药性。它们有助于上调压力响应性的继发代谢产物,从而有助于调节细胞代谢活性。)。但是,更好地了解其作用机理以及它们在植物生长和发展中的主演作用对于农业生产和研究至关重要。已经研究了Rhodopseudomonas palustris菌株PS3增强了番茄植物的生长和产量。菌株还显着改善了土壤养分含量和番茄果实的质量。这些有利的细菌群落有效地有助于改善结果,产量和土壤健康(Lee等人。
环境中纳米塑料(NP)和微塑料(MP)的存在被认为是全球规模的问题。由于其疏水性和较大的特异性表面,NP和MP可以吸附其他污染物,作为多环芳烃(PAHS),并调节其生物利用度和危害。成年斑马鱼暴露3和21天,至:(1)0.07 mg/l NP(50 nm),(2)0.05 mg/l MPS(4.5μm),(3)MPS,带有水的油的吸附油化合物(WAF)的浓度(WAF)的浓度(WAF),均与含有戒指的香油(MPS-WAF),(MPS-WAF),(MPS-WAF),(4)MPS(4)MPS(4) (MPS-B(A)P),(5)5%WAF和(6)21μg/L B(a)p。在接近微绒毛的肠腔中可以看到类似NP的电义颗粒。MP在肠腔中大量发现,但未内化到组织中。21天后,NPS引起CAT的显着下调,GPX1A和SOD1的上调,而MPS上调CYP1A并增加了肝脏真空的患病率。在ill中未观察到组织病理学改变。在这项研究中,受污染的MPS并未增加斑马鱼的PAH水平,但结果强调了塑料颗粒的潜在差异影响,这取决于其大小,因此必须紧急解决真实环境NP和MPS的生态毒理学影响。
分别为 A 2 OR 2 PbI、A 2 OR 3 PbI、A 4 OR 2 PbI、A 4 OR 3 PbI、A 4 OR 4 PbI 和 A 5 OR 2 PbI,
摘要:开发了一种计算上可承受的方法来预测空间中大分子(如多环芳烃)碰撞猝灭和激发的截面和速率系数。应用了混合量子/经典非弹性散射理论 (MQCT),其中分子内部状态之间的量子态到态跃迁使用时间相关薛定谔方程来描述,而碰撞伙伴的散射则使用经典的平均场轨迹来描述。为了进一步提高数值性能,实施了运动方程的解耦方案和初始条件的蒙特卡罗采样。该方法用于计算苯分子 (C 6 H 6 ) 与广泛能量范围内的 He 原子碰撞时旋转激发和猝灭的截面,使用高达 j = 60 的非常大的旋转本征态基组,以及接近一百万个非零矩阵元素进行态到态跃迁。报告并讨论了 C 6 H 6 + He 碰撞截面的性质。近似的精度经过严格测试,发现适用于天体物理/天体化学模拟。此处开发的方法和代码可用于生成 PAH 和其他大分子(如 iCOM)或彗星彗发中分子 - 分子碰撞的碰撞猝灭速率系数数据库。关键词:非弹性散射、旋转激发、态间跃迁、旋转状态、非弹性截面、MQCT、苯、C 6 H 6 ■ 引言
多环芳烃芳烃和pyr烯和吡啶的超高真空沉积在cu(111)表面上保持在1000 K的温度下,从而显示出导致石墨烯的形成。使用扫描隧道显微镜,X射线光电子光谱,角度分辨光发射光谱,拉曼光谱和低能电子衍射证明了石墨烯的存在。与更常用的甲烷或乙烯(例如甲烷或乙烯)相比,前体,倍吡林和吡啶是相对较大的芳香族分子。虽然当将pyrene用作前体时,可以天真地期待六边形石墨烯晶格的形成,但对于倍吡林来说,情况更为复杂。在这种情况下,只有5个和7元环的非替代叠层的非替代拓扑形成观察到的六边形石墨烯晶格。这样的重排,将非替代拓扑转化为替代拓扑,与先前描述类似拓扑改变的报道一致,包括分子倍吡林与pyrene的异构化。在此提出的热合成途径在相对较低的温度和超高真空条件下可以实现,这可以在严格控制和清洁的环境中进一步研究,而传统前体无法访问。
越来越多的证据表明,构成微生物组的人类肠道细菌与几种神经退行性疾病有关。在几项研究中发现了帕金森氏病(PD)和阿尔茨海默氏病(AD)患者的细菌种群的失衡。这种营养不良很可能会降低或增加分别具有保护性或有害人体的微生物组衍生的分子,并通过所谓的“肠脑轴”传达给大脑的这些变化。微生物组衍生的分子Queuine是一种富含大脑中的核酶,仅由细菌产生,并由人类通过其肠道上的表现来挽救。Queuine用枪支抗密码子在TRNA的Wobble位置(位置34)取代鸟嘌呤,并促进有效的细胞质和线粒体mRNA翻译。Queuine耗竭会导致蛋白质的折叠和激活,并激活小鼠和人类细胞中内质网应激和展开的蛋白质反应途径。蛋白质聚集和线粒体障碍通常与神经功能障碍和神经变性有关。为了阐明女王是否可以促进蛋白质折叠,并防止导致蛋白质病的聚集和线粒体缺陷,我们在几种化学合成的Queuine STL-101中测试了几种化学合成的女性STL-101的作用。用STL-101预处理神经元后,我们观察到高磷酸化的α-突触核蛋白的降低显着降低,α-突触核蛋白的标记是灰核核疗法的PD模型中α-突出蛋白聚集的标志物,并且在Accute and Actau consation and actau pyphosphoration中降低了Actuce and Actau phossephose contau pysease contau pysepy pd。此外,在AD模型以及PD的神经毒性模型中,在用STL-101预处理的细胞中发现了神经元存活的相关增加。测量180个神经健康个体血浆中的queuine表明健康的人类维持皇后区的保护水平。我们的工作已经确定了女性在神经保护中的新作用,从而发现了神经系统疾病中STL-101的治疗潜力。