Scholl 反应 1 是一种合成多环芳烃的有效方法,可在一步中形成多个碳 - 碳键。通过自由基阳离子机理 2 进行的 Scholl 反应对底物内电子密度的分布非常敏感,氧化芳族偶联发生在电子密度最高的位置。3 基于这一概念,我们最近证明,通过在底物中引入萘部分可以促进 Scholl 反应,从而产生高度弯曲的多环芳烃。4,5 在此,我们通过展示成功合成前所未有的芳香鞍形物(图 1 中的 1)来扩展这一策略的范围,这是通过在 Scholl 反应的底物中加入萘基来实现的。芳香鞍形物,也称为负弯曲多环芳烃,最近受到越来越多的关注 6,7,原因有两个。首先,它们代表碳黑石中的片段 8
基于对环境的影响确定并排名collution的来源。然后,他们确定了解决这些来源的可能策略,并进行了成本效益分析,以确定哪些策略将为每花费最大的社会和环境利益提供。使用此过程,Springfield确定追求最具成本效益的策略是雨水拘留盆地改造,在该市的废水处理设施之一中的养分清除增强,减少雨水中多环芳烃的计划,以及SSO中的多环芳烃,以及SSO的SSO控制,以减少渗透率和浸润性和水中的水域。Springfield在计划过程中没有选择特定的项目,而是致力于追求与所选策略保持一致的项目。
22 E.,Annandale,NJ 08801,美国摘要:芳烃的初始热反应与许多工业应用有关。然而,跟踪越来越多的重度多环芳烃(PAH)的产物极具挑战性,因为许多反应都与分子混合物并行展开。在此,我们研究了2,7-二甲基苯乙烯(DMPY)的反应,以解读轻度热处理过程中甲基取代基的作用。我们发现,甲基取代基的存在是减少自然分子混合物中化学反应所需的热严重程度的关键。通过NMR,质谱和非接触式原子力显微镜(NC-AFM)表征了包括单体,二聚体和三聚体在内的热产物的复杂混合物。确定了广泛的结构转化,包括甲基转移和聚合反应。在多环芳烃在聚合过程中的作用上获得了一种详细的理解。
摘要 消防训练可能会使消防员和教员接触到因训练燃料而异的有害空气化学物质。我们在 5 天的时间内,每天在三个教学场景中进行区域和个人空气采样,涉及燃烧两种类型(指定为 alpha 和 bravo)的定向刨花板 (OSB)、托盘和稻草,或使用模拟烟雾。24 名消防员和 10 名教员参加了此次活动。消防员每个场景参与一次(间隔约 48 小时),教员每个场景监督三次训练练习(1 天内完成)。在实弹场景(不包括模拟烟雾)中,对个人空气样本进行了多环芳烃 (PAH)、挥发性有机化合物 (VOC) 和氰化氢分析。对所有场景的区域空气样本进行了酸性气体、醛、异氰酸酯和 VOC 分析。对于实弹射击场景,个人空气中苯和多环芳烃的中位浓度超过了适用的短期暴露限值,消防员的中位浓度高于教员。按燃料类型比较结果时,与其他燃料相比,bravo OSB 的个人空气中苯和多环芳烃的浓度更高。在 bravo OSB 场景中,醛和异氰酸酯的中位区域空气浓度也最高,而托盘和稻草产生的某些 VOC 和酸性气体的中位浓度最高。这些结果建议使用自给式呼吸器
引言生物修复是处理被有机污染物污染的土壤的常见方法。Currently there are many challenges to bioremediation.例如,石油不能完全代谢为CO 2和H 2 O,而左上的某些污染物(例如多环芳烃(PAHS))比其父母更具毒性。由于其低溶解度,这些污染物变得更难及时处理,因为它们被微生物较少可用,因为它们被土壤颗粒吸收。要处理这些化合物的低溶解度,经常使用表面活性剂,但它们带来了其他问题。它们代价高昂,对微生物剧毒,难以生物降解,并且可能吸收到土壤中。浆液生物反应器(SB)可用于缓解其中一些问题,并处理用多种有机物质污染的土壤,例如多环芳烃(PAHS),农药,炸药和氯化有机污染物。该技术正在用于对用顽固,有毒和疏水有机化合物污染的土壤进行生物修复。当SB中的普通治疗不足时,可以使用两液相(TLP)生物反应器。TLP生物反应器已被确定具有增强生物利用度并增加疏水有机物降解的潜力。
土壤和雨水排放系统。其他被清除的废物包括多环芳烃 (PAH)、氯苯和少量遗留放射性物质。之前进行了沉积物清理,保护了相邻的水道,即 Cow Pen Creek 和 Dark Head Cove。地下水清理也在单独的行动中处理。
多环芳烃 (PAH) 和二恶英类化合物(包括硫、氮和氧杂环)是广泛存在的有毒环境污染物。能够与芳香族多环化合物一起生长的多种微生物对于污染场地的生物修复和地球的碳循环至关重要。在这里,在联苯 (BP) 存在下生长的假单胞菌 B6-2 (ATCC BAA- 2545) 细胞能够同时降解 PAH 及其衍生物,即使它们以混合物的形式存在,并且能够耐受高浓度的剧毒溶剂。对菌株 B6-2 的 6.37 Mb 基因组的遗传分析揭示了负责芳香族化合物中央分解代谢系统和溶剂耐受性的基因簇共存。我们利用功能转录组学和蛋白质组学来识别与 BP 以及 BP、二苯并呋喃、二苯并噻吩和咔唑混合物的分解代谢相关的候选基因。此外,我们观察到 BP 在转录水平上的动态变化,包括芳香化合物的代谢途径、趋化性、流出泵和转运蛋白,这些可能与适应 PAH 有关。这项关于菌株 B6-2 高度多功能活性的研究表明,它
发光太阳集合器(LSC)是一种光浓缩设备,比其他光学方法具有多种优势,例如使用散布光和吸引人的美学作用的可能性,这使其成为其在建筑城市环境中构建城市设置的整合的理想技术。为了提高其有效性并促进大规模采用,降低生产影响并延长其寿命的解决方案将非常有益。光稳定性对于LSC中使用的流体团至关重要,因为它们必须忍受多年来延长的阳光暴露。紫外线辐射可以改变有机发射器的结构,降低LSC效率并引起面板替代,并具有经济成本和环境影响。在这项研究中,将两种推动染料组成,其中包括静脉内包含的含量,即peri2f和nap2car d,作为使用化学再生单体(R-MMA)制造的基于散装PMMA的LSC的发射剂(R-MMA)。与使用Virgin Monomer相比,平板生产的全球变暖潜力大约小于四倍,从而增强了大规模LSC制造的可持续性和鼓励的循环。最有效的Peri2F/R-PMMA系统的H DEV的HED为0.7%,低于包含最先进的发射器LR305的设备。非常明显地显示出对光降解的抗性远大的。预测分析估计,使用约1年后,含有100 ppm的peri2F的LSC可以匹配R-PMMA的LR305性能,而初始排放强度降低了2%。©2024作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
外源性因素:外部因素,如紫外线 (UV) 辐射、电离辐射和化学致癌物,会显著造成 DNA 损伤。紫外线辐射可导致环丁烷嘧啶二聚体 (CPD) 和 6-4 光产物的形成,从而扭曲 DNA 螺旋。电离辐射可产生双链断裂 (DSB),这是最致命的 DNA 损伤形式之一。化学剂,包括烷化剂和多环芳烃 (PAH),也可以修饰 DNA 碱基,导致诱变。
溶血杆菌属。是各种植物种类的根际的常见细菌居民。然而,根际条件对生理学的影响仍相对研究。提供有关溶血杆菌行为的线索。在这个生态位中,我们在共同的合成生长培养基(LBA)上研究了从烟草根际(LBA)和含有植物根瘤菌(RMA)含有的成分的生长培养基上,从烟草根际(LBA)和含有的生长培养基上研究了capsici az78(az78)的生理学。RMA上AZ78菌落周围的光环的存在是与生长培养基成分差异有关的第一个可见效应,它与大型外环的形成相对应。与LBA相比,RMA中可用的营养量较低,与编码CAMP受体样蛋白(CLP)的基因表达更高,负责细胞运动和生物膜形成调节。RMA上的AZ78细胞运动是动的,配备了细胞表面附属物,并以嵌入密集的原纤维层的小组组织。与LBA相比,质谱成像的代谢分析表明,AZ78在RMA上产生的分析物的多样性增加。尤其是鉴定出具有抗生素活性的推定环状脂质肽,多环芳烃,多环芳烃,环状大酰酰胺和其他推定的次级代谢产物。总的来说,这项研究中获得的结果揭示了AZ78通过其移动,形成生物膜和释放二级代谢产物的能力在根际中繁衍生息的潜力。