即将提供的服务: - Biorider:Space Rider 平台的新设施 - BioRider 是 Space Rider 首航的体现 - KI 是生物实验的“子聚合器” - 与客户群直接联系(商业方式) - 提供在 Space Rider 上实施生物实验的全套服务
肌电控制,在肌肉收缩期间生成的肌电图(EMG)信号来控制系统或设备,是一种有希望的方式,可实现对新兴无处不在的计算应用程序的始终可用控制。但是,由于用户之间的行为和生理差异,其历史上的广泛使用受到对用户特定机器学习模型的需求的限制。利用公开可用的612-用户EMG-EPN612数据集,这项工作消除了这一概念,表明如果没有特定用户的培训,则可以实现真正的零射击交叉用户肌电控制。通过采用离散的分类方法(即,将整个动态手势视为一个事件),在一组306个未见的用户(没有提供培训数据)的一组中,可以实现六个手势的分类精度为93.0%,与大多数EMG研究(通常仅使用10-20个用户相比),可以雇用强大的交叉控制。通过将结果组织成一系列的小型研究,这项工作提供了对离散跨用户模型的深入分析,以回答未知问题并发现新的研究方向。特别是,这项工作探讨了建立跨用户模型所需的参与者数量,转移学习对这些模型的影响以及代表性不足的最终用户人口统计数据在培训数据中的影响等。结果表明,大型数据模型可以有效地推广到新的数据集,并减轻历史上限制基于EMG的输入的常见混杂因素的影响。另外,为了进一步评估创建的跨用户模型的性能,创建了一个全新的数据集(使用相同的记录设备),其中包括已知的协变量因子,例如跨日使用和肢体位置可变性。
摘要 量子网络通过执行纠缠分布促进了许多应用,包括安全通信和分布式量子计算。对于某些多用户量子应用程序,需要访问共享的多部分状态。我们考虑设计以更快的速率分发此类状态的协议的问题。为此,我们提出了三种利用多路径路由来提高多用户应用程序分发速率的协议。这些协议在具有 NISQ 约束的量子网络上进行评估,包括有限的量子存储器和概率纠缠生成。模拟结果表明,与单路径路由技术相比,开发的协议实现了多部分状态分发速率的指数级增长,在研究的案例中最大增长了四个数量级。此外,对于较大的用户集,分发速率的相对增加也被发现有所改善。当在缩小的真实世界拓扑中测试协议时,发现拓扑对协议实现的多部分状态分发速率有显著影响。最后,我们发现多路径路由的好处在较短的量子存储器退相干时间和中间的纠缠生成概率值时最大。因此,所开发的协议可以有益于 NISQ 量子网络控制和设计。
摘要:由于可再生能源在电网中的大规模渗透,储能(ES)设备的利用(ES)设备促进可再生能源消耗并降低用户成本已逐渐成为发展趋势。彻底探索了ES在用户方面的经济利益,并建立了ES的全面好处模型。此外,还建立了共享ES容量配置的投资决策模型。基于每日负载概况的相似性,提出了一种基于高和低相似性的用户选择方法,以提高共享ES的收入。一个示例用于分析和比较用户在高和低负载概况相似性下共享的ES的收入。给出了投资决策的共享能力配置,以实现更大的共享经济利益,这与用户数量呈正相关。
关于能源市场管理局(EMA) 能源市场管理局 (EMA) 是新加坡贸易与工业部下属的一个法定委员会。 通过我们的工作,我们寻求打造一个可持续增长的进步能源格局。 我们的目标是确保可靠和安全的能源供应,促进能源市场的有效竞争,并在新加坡发展充满活力的能源行业。 请访问 www.ema.gov.sg 了解更多信息。 Instagram:@EMA_Singapore | 脸书:facebook.com/EnergyMarketAuthority | 推特:@EMA_sg | 领英:linkedin.com/company/energy-market-authority-ema-/ 关于国家公园局 (NParks) 国家公园局 (NParks) 负责改善和管理我们自然之城的城市生态系统。 我们是绿化、生物多样性保护以及野生动植物健康、福利和管理的牵头机构。 我们还与社区密切合作,以提高我们的生活环境质量。国家公园局管理着约 400 个公园、3,347 公顷的自然保护区、新加坡植物园、乌敏岛和姐妹岛海洋公园。此外,还有广泛的自然之路网络和超过 300 公里的公园连接网络,连接全岛的主要公园、自然区和住宅区。每年,我们在各种绿地开展超过 3,500 个教育和推广计划。国家公园局开发了一种城市生物多样性保护模型,旨在保护土地稀缺的新加坡的代表性生态系统。国家公园局还监测和协调措施,以增强我们城市景观中的生物多样性。国家公园局正与景观、园艺、兽医和动物部门的合作伙伴密切合作,以提高生产力,并为各级劳动力提供培训。提高行业能力将支持新加坡成为自然之城的愿景。欲了解更多信息,请访问 www.nparks.gov.sg 和 www.facebook.com/nparksbuzz。
从图中可以看出,在第二种情况下,由于 STA3 支持 2 个流的探测,因此只有当流总数为 2 时,它才能参与 MU-MIMO 传输。因此,探测能力更佳的 STA4 在与 STA3 分组进行 MU-MIMO 传输时也只能使用一个空间流。这也促使需要根据用户的 MIMO 能力对其进行智能分组,以最大限度地发挥 MU-MIMO 的优势。在 UL MU-MIMO 的情况下,限制与 DL MU-MIMO 中的限制大致相同。参与 UL MU-MIMO 传输的客户端可以传输的最大 STS 数量不能超过 4,并且必须小于或等于客户端支持的 UL SU-MIMO 的最大 STS 数量。此外,STS 的总数(所有用户的总和)小于或等于 8。对于 UL,触发帧包含与客户端相关的流的信息。
*EDR 的初始发射配置包括 4 个 SED 和 4 个 MDL。1. 空气冷却的最大机架冷却能力高达 1200 W,水冷的最大机架冷却能力高达 2000 W。只要不超过单个冷却能力且总能力不超过 2000 W,就可以结合使用这两种冷却方式。2. SED 可配置为 28 Vdc 或 120 Vdc。3. 此连接是高速数据连接,供执行其自身视频处理的有效载荷使用。ESA 的蛋白质结晶诊断设施就是一个例子。4. 流体公用设施通过公用设施配电板 (UDP) 进行路由。接口可以在不同的有效载荷之间共享。这些特性代表基准版本。然而,模块化配置允许进行调整。