摘要 目的。基础、转化和临床神经科学越来越关注大规模侵入性神经元活动记录。然而,对于大型动物(如非人类灵长类动物和人类)而言,与啮齿类动物相比,它们的脑部较大,脑沟和脑回更具有挑战性,因此,在长时间内同时记录大脑任何位置的数百个神经元方面存在巨大的未满足需求。在这里,我们测试了插入两只猕猴初级视觉皮层的薄而柔韧的多电极阵列 (MEA) 的电气和机械特性,并评估了它们的磁共振成像 (MRI) 兼容性及其在 1 年内记录细胞外活动的能力。方法。为了将浮动阵列插入视觉皮层,20 x 100 µ m 2 轴通过可吸收的聚乳酸-乙醇酸共聚物涂层暂时加固。主要结果。手动插入阵列后,阵列的体外和体内 MRI 兼容性被证明是极好的。我们记录了多达 50% 的电极的清晰单元活动,以及 60%–100% 的电极的多单元活动 (MUA),从而可以详细测量受体场和神经元的方向选择性。即使在插入 1 年后,我们仍然在 70%–100% 的电极上获得了显著的 MUA 反应,而受体场在整个记录期间保持非常稳定。意义。因此,与现有阵列相比,我们测试的薄而柔韧的 MEA 具有几个关键优势,最显著的是脑组织顺应性、可扩展性和脑覆盖率。未来人类的脑机接口应用可能会从这种新一代长期植入式 MEA 中受益匪浅。
摘要:近年来,多微电网引起了学术界和工业界的关注。多微电网 (MG) 允许整合不同的分布式能源 (DER),包括间歇性可再生能源和可控本地发电机,并提供更灵活、可靠和高效的电网。本研究制定并提出了一种解决方案,用于在极端事件期间在具有不同资源的多 MG 配电系统 (PDS) 中寻找移动储能 (MES) 的最佳位置和运行,以最大限度地提高系统弹性。为此,定义了一个基于事件的多阶段系统弹性指数,并研究了物联网 (IoT) 应用对多 MG 系统中 MES 运行的影响。此外,还介绍了需求和价格不确定性对多 MG 运行性能指标的影响。本研究使用流行的 PG & E 69 总线多 MG 配电网络进行模拟和案例研究。为了更好地了解 MES 单元和不同的 DER 以及 IoT 对多 MG 系统运行方面的贡献,我们构建了一种新的混合 PSO-TS 优化算法来进行模拟。模拟结果表明,MES 和其他能源资源的优化运行以及相应的能源共享策略可显著提高配电系统的运行性能。
背景:多电极阵列被广泛用于分析潜在的有毒化合物的影响,并评估神经保护剂对短期和长期培养中神经网络活性的影响。多电极阵列提供了一种对自发性和诱发神经元活性的非破坏性分析的方法,从而可以在体外对神经退行性疾病进行建模。在这里,我们提供了有关这些设备当前如何用于淀粉样蛋白β肽及其在阿尔茨海默氏病中的作用的概述,这是最常见的神经退行性疾病。主体::此处分析的大多数研究表明,神经元培养物对淀粉样蛋白β的聚集形式的快速反应,从而导致长期增强的峰值频率和障碍的增加。这反过来表明,该肽可能在引起阿尔茨海默氏病患者中观察到的典型神经元功能障碍方面起着至关重要的作用。
标题:下丘脑脑切片中的多峰阵列记录跑步头:穿孔多电极阵列记录作者:Mino D. C. Belle 1,2,BeatrizBaño-Otalora 1和Hugh D.Piggins 1
在2010 - 19年期间,家庭和企业在2019年将其用电减少了41亿千瓦时。这两个公用事业的零售客户消耗的实际电力超过13%,相当于公用事业提供的560,000个典型家庭的用电。Xcel Energy超过了PUC每年在2010-19期间设定的节能目标,除2012年以外,其批准的DSM预算。
摘要 多电动飞机 (MEA) 架构由多个子系统组成,这些子系统都必须符合航空航天应用的既定安全要求。因此,在对不同的解决方案进行分类时,实现可靠性和容错是主要基石。混合动力飞机 (HEA) 扩展了 MEA 概念,将推进动力和辅助动力电气化,从而突破了电气化的极限。本文概述了目前正在争夺飞机电力转换系统的大功率电机系列及其相关的电力电子转换器 (PEC) 接口。还介绍了各种功能和起动发电机 (S/G) 解决方案。为了突出最新的进展,以图形方式表示了在 E-Fan X HEA 项目中开发的世界上最强大的航空航天发电机 (Mark 1) 的效率,并与其他竞争解决方案进行了评估。受效率、功率密度、可靠性以及启动功能的严格要求的驱动,系统级设计的补充考虑至关重要。为了突出 MEA 目标并利用所有潜在优势,必须将所有子系统视为一个整体。然后表明,PEC、飞机电网和电机的组合可以更好地适应整个系统。本调查概述了这些问题的影响,并提供了
- 在稳定模式下保持稳定的速度(静态扭矩在额定电机扭矩的 0.25 到 1.00 之间变化时,精度为 ±5 %); - 静态和动态力矩的补偿; - 在轧制和轧制设备的电力驱动装置中更换轧辊时,保持补偿器的填充度和工艺过程的连续性。 - 反转并限制轧辊紧急制动的时间(不超过轧辊周长的 ¼)。 电力驱动装置的设定参数的保持精度应确保在静态运行时,生产线最大运行速度的稳态偏差 – 在三相交流电源静态电压 +10%、-15%、频率 ±1%、环境温度 ±10 摄氏度 [1] 下,不超过标称运行速度的 ±1 %。
摘要 — 全电动飞机 (MEA) 因其更高效、更可靠的潜力而成为未来先进飞机的发展趋势。因此,最佳电源管理在 MEA 中起着重要作用,尤其是在使用混合储能系统 (HESS) 时。在本文中,我们提出了一种新型的 MEA 自适应在线电源管理算法,旨在最大限度地减少基于电池-超级电容器 HESS 的发电机的功率波动。该问题首先被表述为一个受约束的随机规划问题。然后,我们提出了一种在线算法,使用 Lyapunov 优化方法近似地解决该问题,该方法不需要任何统计数据和未来的电力需求知识。我们进一步提出了一种 MEA 自适应在线电源管理算法,将自适应策略与在线算法相结合。跟踪驱动的仿真结果证明了所提出的 MEA 电源管理算法的有效性、效率和适应性。
摘要 金属化聚丙烯电容器(MPPC)因损耗低、自愈能力强等优点,在高压直流输电系统的模块化多电平换流器(MMC)中得到广泛应用。由于等效串联电阻的增加和电容量的减小,MMC中MPPC的性能随时间推移而劣化,因此MPPC的可靠性分析至关重要。本文提出一种考虑腐蚀失效的有限元法(FEM)来分析MPPC的可靠性。首先,建立MPPC的等效电模型和实际热模型,计算MPPC的损耗和温度分布。其次,利用FEM模型对MPPC的腐蚀失效进行分析和仿真,利用聚丙烯薄膜老化模型建立MPPC的寿命模型,并通过传统腐蚀失效寿命模型和浮充老化试验对模型进行验证。最后,在MMC模型中提取各子模块(SM)的电压,结合FEM模型和寿命模型分析各SM中MPPC的寿命。结果表明,在MMC中,靠近直流线或中间部分的各臂中的SM具有较短的MPPC寿命。
在先进飞机配置 (AVACON) 研究项目中,进行了一架中程飞机的协作概念设计,该飞机配备超高涵道比 (UHBR) 发动机,预计于 2028 年投入使用。本文介绍了 AVACON 中飞机机载系统的整体架构、尺寸和评估方法。为此,回顾了文献中提出的概念系统设计方法的重要贡献,以确定方法改进的方向。描述了贡献合作伙伴的角色分配及其系统设计活动的方法。拥有不同的贡献者保证,从整体飞机到详细子系统设计的任务以及系统模型保真度的不断提高都得到了覆盖。此外,还定义了一种最先进的基线架构,它将作为开展权衡研究的起点,以研究系统架构概念和创新技术的潜力。推导出先进飞机配置所隐含的大量系统设计要求和新边界条件,为计划中的技术研究提供展望。