您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
人工智能 (AI) 是指计算机或机器执行通常需要人类智能才能完成的任务的能力,例如学习、解决问题、决策等。构建 AI 系统有几种不同的方法,包括机器学习(系统在数据集上进行训练,可以随着时间的推移提高其性能)和基于规则的系统(系统遵循一组预定的规则来做出决策)。
CGAS丁字道在先天免疫中至关重要,尤其是在抗病毒反应和细胞应激管理中。CGA通过启动第二信使环循环GMP-AMP合酶(CGAMP)的合成作为细胞质DNA传感器,后来激活了STING途径,从而导致产生I型Interferons和其他细胞因子和其他细胞因子,并激活型肠道菌群的激活。最近的研究表明,泛素化变化密切调节CGAS刺激途径的功能。泛素化修饰影响CGA和刺激的稳定性和活性,同时还通过调节其降解和信号强度来影响免疫反应的准确性。e3泛素连接酶特异性地通过泛素化改变来促进降解或调节与CGAS刺激相关的蛋白的信号传导。此外,CGAS刺激途径的泛素化在各种细胞类型中具有不同的功能,并与NF-K B,IRF3/7,自噬和内质网应力接合。这种泛素介导的调节对于维持先天免疫的平衡至关重要,而过度或不足的泛素化可能会导致自身免疫性疾病,癌症和病毒感染。对CGAS插入途径内的泛素化过程进行了广泛的检查,阐明了其先天免疫中的特定调节机制,并确定了对相关疾病进行干预的新颖靶标。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
使用Prometheus的MMF分析代理包括系统规范任务MTV识别功能,以及来自原始体系结构设计阶段,MTV组功能和MTV分析组的两个任务。由于对系统功能的识别涉及对目标规范的分析,并且还考虑了从用例场景中考虑信息,因此将此任务放置在分析学科而不是要求中。功能还用于定义将要开发的代理类型。这是在MTV组功能任务中完成的,其结果是描述各种可能设计的图表。表示,在MTV分析分组中评估了设计,从而列出了代理类型的列表,每种设计都封装了一组功能。
在两年的时间里,路易斯维尔大学医院出现了多重耐药性肺炎克雷伯菌引起的院内感染(M. Raff,未发表数据)。怀疑是 R 因子传播,因为在几种不同的肺炎克雷伯菌血清型中都发现了多重耐药特性(1、11、17)。在本研究中,我们表明,单一 R 因子是造成这种流行病的原因,并且在我们的医院环境中持续存在。脱氧核糖核酸 (DNA)-DNA 杂交用于在所有肺炎克雷伯菌菌株中识别这种 R 因子,并且可能被证明是持续研究这种和未来多重耐药微生物爆发的有用工具。(这项工作是 M.-A. Courtney 提交给路易斯维尔大学研究生院的论文的一部分,部分满足博士学位的要求。)
将患者肿瘤组织样本在细胞外基质 + 化学确定培养基中培养成肿瘤类器官。PDO 被鉴定为 Hoechst 阳性细胞簇,并使用荧光活力染色分别确定每个 PDO 的活细胞和死细胞数量。对每种化合物使用 3 个剂量进行药物筛选,并计算 TO-PRO-3 活细胞测量值的曲线下面积倒数以量化反应。使用 Tempus xT 和全转录组分析对类器官和配对患者肿瘤(如有)进行 NGS。通过我们的标准流程处理所得数据,以识别可靶向的突变、新抗原、CNV 和融合。
尽管免疫治疗具有明显的优势,但仍存在不可避免的脱靶效应,导致严重的不良免疫反应。近年来,药物递送系统(DDS)的研究和开发日益受到重视。在几十年的发展中,DDS已显示出以精确靶向的方式递送药物以减轻副作用的能力,并具有灵活控制药物释放、改善药代动力学和药物分布的优势。因此,我们认为将癌症免疫治疗与DDS相结合可以增强抗肿瘤能力。在本文中,我们概述了癌症免疫治疗中最新的药物递送策略,并简要介绍了基于纳米载体(脂质体、聚合物纳米胶束、介孔二氧化硅、细胞外囊泡等)和偶联技术(ADC、PDC和靶向蛋白质降解)的DDS的特点。我们的目的是向读者展示不同免疫机制下的各种药物递送平台,并分析它们的优势和局限性,为癌症免疫治疗提供更优越、更准确的靶向策略。
数字化颠覆了商业模式,使产品和服务更加智能。随着物联网、区块链或增强现实等数字技术的快速出现和采用,数字化在全球范围内不可逆转地改变了我们所有行业的私人生活和组织惯例。因此,数字化在创新、连通性、效率和生产力改进方面发挥了无限潜力。然而,研究和实践仍然缺乏对数字技术本质的根本理解。为了弥补这一差距,我们开发了一种多层数字技术分类法,其中包括八个维度,这些维度沿着既定的模块化架构层构建,即服务、内容、网络和设备。基于我们的分类法,我们还通过聚类分析确定了七种数字技术的原型。为了修改和评估我们的成果,我们从 Gartner 新兴技术炒作周期中对 45 种数字技术进行了分类,并与其他研究人员进行了评估。我们的结果有助于对数字技术的描述性知识。它们使研究人员和从业人员能够在两个聚合级别上对数字技术进行分类,并就其采用做出明智的决策。关键词:数字化、数字技术、分类法、原型。