量子计算是基于量子力学的工作原理进行的,当前二维量子计算技术面临噪声、信息容量等重大问题,高维量子计算被用来解决这些问题。本研究尝试通过高维下的多全局和单全局量子相位估计(QPE)算法来近似计算π。研究表明,在高维下可以使用更少的量子资源来计算π,且精度至少等于或高于二维QPE。此外,当量子数或维数保持不变时,高维下多全局QPE的结果至少等于或优于单全局QPE。本研究中的所有计算均在Cirq上实现。
高性能计算 (HPC) 技术的进步已经能够通过归纳和建设性方法为心血管 (CV) 科学提供信息。临床试验允许比较干预的效果,而无需了解机制。这是归纳方法的典型示例。在 HPC 领域,训练由神经网络构建的人工智能 (AI) 模型以使用大规模多维数据集预测未来的 CV 事件是可以依赖并帮助理解机制基础以进行优化的对应方法。然而,与临床试验相比,AI 可以在个人层面计算事件风险,并有可能为个性化医疗的应用提供信息和改进。尽管 AI 具有明显的优势,但 AI 分析的结果可能会识别出多维数据与临床结果之间原本无法识别/意料之外(即非直观)的关系,这可能会进一步揭示潜在的机制途径并确定潜在的治疗目标,从而有助于从因果关系中解析观察关联。建设性方法对于克服现有知识的局限性和固有偏见以实现对心血管疾病复杂病理生物学的更深入理解仍然至关重要。HPC 技术有可能在心血管基础和临床科学中支撑这种建设性方法。一般来说,即使是复杂的生物现象也可以归结为简单的生物/化学/物理定律的组合。在演绎方法中,重点/意图是通过简单原理的组合来解释复杂的心血管疾病。
高性能计算 (HPC) 技术的进步已经能够通过归纳和建设性方法为心血管 (CV) 科学提供信息。临床试验允许比较干预的效果,而无需了解机制。这是归纳方法的典型示例。在 HPC 领域,训练由神经网络构建的人工智能 (AI) 模型以使用大规模多维数据集预测未来的 CV 事件是可以依赖并帮助理解机制基础以进行优化的对应方法。然而,与临床试验相比,AI 可以在个人层面计算事件风险,并有可能为个性化医疗的应用提供信息和改进。尽管 AI 具有明显的优势,但 AI 分析的结果可能会识别出多维数据与临床结果之间原本无法识别/意料之外(即非直观)的关系,这可能会进一步揭示潜在的机制途径并确定潜在的治疗目标,从而有助于从因果关系中解析观察关联。建设性方法对于克服现有知识的局限性和固有偏见以实现对心血管疾病复杂病理生物学的更深入理解仍然至关重要。HPC 技术有可能在心血管基础和临床科学中支撑这种建设性方法。一般来说,即使是复杂的生物现象也可以归结为简单的生物/化学/物理定律的组合。在演绎方法中,重点/意图是通过简单原理的组合来解释复杂的心血管疾病。
基于人工智能的多维数据库技术是一项新技术。该技术可以实现多模态数据(非结构化数据、半结构化数据、结构化数据)的分布式存储,同时还可以将数据以超立方体的形式存储,并对数据进行实时的多维分析和查询。传统的多维数据库直接从二维表中提取维度信息,没有考虑维度信息之间的关联性。因此,结合人工智能技术,可以实现多模态数据的关联分析,自动生成维度信息。具体而言,针对商业智能(BI)领域对多维数据高效分析、存储和处理的需求,开展基于人工智能的多维数据库技术应用研究,实现多领域异构数据的统一采集,高效、实时、自动标注、聚类,数据信息智能提取及语义关联,超立方体存储和在线分析OLAP、在线分析处理等。设计基于人工智能的多维数据库原型系统,满足海量数据智能分析处理需求。系统学习用户的查询行为模式和数据特征。通过内置机器学习算法构建立方体数据模型。持续进行模型优化,针对特定用户精准生成查询结果。通过分布式算法引擎、混合在线分析处理、分布式存储引擎等人工智能功能模块,整合多源异构数据资源,实现数据关联、智能学习、推理和预测,为管理决策端和业务运营端提供更加完善、可靠的预测决策服务。