随着蛋白质结构预测的进步,RNA结构预测最近从深度学习研究人员那里受到了越来越多的关注。rnas引入了实验性RNA结构的稀疏性和较低的结构多样性,因此引入了实质性的chal。现有文献通常对这些挑战的解决通常很差,其中许多报道由于使用培训和测试集具有显着的结构重叠而导致的性能。此外,最新的结构预测批判性评估(CASP15)表明,RNA结构的深度学习模型目前的表现优于传统方法。在本文中,我们介绍了从蛋白质数据库(PDB)推出的结构化RNA的数据集RNA3DB,该数据集旨在培训和基准测试深度学习模型。RNA3DB方法将RNA 3D链条分为不同的组(组件),这些链在序列和结构方面都不冗余,提供了一种可靠的方法来分割训练,验证和测试集。确保这些结构上不同的组件的任何分裂可以产生测试和验证集,这些测试集与训练集中的序列和结构不同。我们提供RNA3DB数据集,这是RNA3DB组件的特定火车/测试拆分(以大约70/30的比率),该数据将被更新时期
随着人工智能(AI)社会应用的推进,人们正在探索将人工智能应用于艺术和设计等创意领域。尤其是,许多研究和作品示例已经表明,人工智能可以通过使用生成对抗网络(GAN)和其他生成模型来生成“逼真”的图像和音乐,就好像它们是人类创造的一样。另一方面,有人可能会认为生成模型所做的只是从训练数据中学习到的统计模式的再现,并质疑它们作为表达的新颖性和独创性。在本文中,我们研究了人工智能和创造力的现状,并提出了一种通过扩展 GAN 框架来创造新颖表达,尤其是音乐表达的方法。通过这些,我们考虑了人工智能将在未来为创造不仅仅是模仿人类创作的表达做出贡献。
[1] Sato, Y.、Henley, EJ、Inoue, K.:“机器人危险控制系统设计的动作链模型”,IEEE Trans. on Reliability,第 39 卷,第 2 期,(1990 年 6 月)。[2] Kawashima, O.、Sato, Y.(2015 年):”
原始生殖细胞(PGC)是配子的胚胎前体。在小鼠和大鼠中,PGC可以通过形成胚胎生殖细胞(EGC)轻松地在体外获得多能性。迄今为止,尽管人类PGC(HPGC)在生殖细胞肿瘤发生的背景下很容易经历多能转化,但在人类中尚未建立可比的体外系统。在这里,我们报告说,HPGC样细胞(HPGCLC)在暴露于先前用于得出小鼠EGC的相同感应信号后经历人类胚胎类细胞(HEGCLC)。这种定义的无馈物培养系统允许有效地推导人EGCLC,可以在标准的人类多能干细胞培养基中扩展和维持。HEGCLC在转录上与人类多能干细胞(HPSC)相似,并且可以区分所有三个细菌层,并再次引起PGCLC,证明了多能状态的互助性。这在表观遗传水平上也很明显,因为在HPGCLC中发生的初始DNA脱甲基化在HEGCLC中很大程度上逆转,将DNA甲基恢复到HPSC中观察到的水平。这种新的体外模型捕获了从多能干细胞状态到生殖细胞身份并再次返回的过渡,因此代表了一个高度可牵引的系统,用于研究多能和表观遗传转变,包括在人类生殖细胞肿瘤发生过程中发生的多能和表观遗传转变。
为任何软件工具,固件或类似的辅助手段提供非歧视性访问,以确保备用电池的全部功能以及在更换期间和之后安装的设备的全部功能; 在制造商,进口商或授权代表的免费访问网站上提供有关设备所有者通知和授权替换电池电池的通知和授权的程序的描述;该程序应允许远程提供通知和授权; 在提供对软件工具,固件或类似辅助手段的访问权限之前,制造商,进口商或授权代表只需收到设备所有者的通知和授权即可。也可以通过所有者的明确书面同意书来提供此类通知和授权; 制造商,进口商或授权代表应在收到请求后的3个工作日内提供对软件工具,固件或类似辅助手段的访问权限,并在适用的情况下进行通知和授权。
图 1. 两种 iPSC 系的干细胞表征示例。(A)TaqMan hPSC Scorecard Panel 将样本的基因表达谱与参考集的基因表达谱进行比较(分别为彩色点和灰色箱线图)。该检测使用超过 90 个基因和 13 个 PSC 的静态数据库进行比较。(B)PluriTest 检测使用微阵列数据根据多能性评分(反映多能性程度)和新颖性评分(反映分化程度)确认多能性标记表达。该检测使用超过 36,000 个转录本和超过 450 种细胞和组织类型的流体参考集进行比较。(C)KaryoStat+ 检测提供全基因组覆盖,可准确检测拷贝数变化和基因组畸变。
诱导的多能干细胞(IPSC)衍生的T(IT)细胞代表了具有工程T细胞的养子池疗法中的突破性边界,并准备克服与常规制造方法相关的关键限制。IPSC提供了现成的治疗性T细胞来源,具有有限膨胀和直接遗传操作的潜力,以确保通过嵌合抗原受体(量子)引入特定的治疗功能,例如抗原特异性的特异性治疗功能。重要的是,IPSC的基因工程提供了产生对严格安全评估的完全修改的克隆线的好处。对利用IT细胞的潜力至关重要的是开发坚固且临床上兼容的生产过程。目前用于基因工程的方案以及旨在反映人类造血和T细胞发育的分化方案,其效率各不相同,并且通常包含不合格的组件,从而使它们不适合临床实施。这项全面的审查集中在过去十年中取得的显着进展,从而在IPSC中产生功能性的T细胞。重点是与良好的制造实践(GMP)标准,可伸缩性,安全措施和质量控制的对齐,这构成了临床应用的基本先决条件。总而言之,对IPSC作为来源的关注承诺标准化,可扩展,临床相关且可能更安全地生产工程的T细胞。这种开创性的方法具有将希望扩展到更广泛的患者和疾病的潜力,在收养T细胞疗法方面的新时代领先。