5 孟加拉国吉大港大学生物科学学院生物化学与分子生物学系,6 孟加拉国吉大港兽医与动物科学大学食品科学与技术学院,7 孟加拉国达卡达卡大学生物化学与分子生物学系,8 孟加拉国达卡发展替代大学生物技术与遗传工程系,9 孟加拉国达卡贾汉吉尔纳加尔大学生物化学与分子生物学系,10 印度尼西亚望加锡哈桑丁大学药学院药学系,11 孟加拉国达卡达卡大学药学院药学系,12 印度巴雷利 ICAR-印度兽医研究所病理学分部,13 沙特阿拉伯吉赞吉赞大学医学实验室技术系,14 专门医学实验室会诊 SMIRES,沙特阿拉伯吉赞大学,15 沙特阿拉伯吉赞大学护理与相关健康科学学院研究与科学研究部,16 土耳其布尔萨乌鲁达大学医学院,
多药革兰氏阴性细菌感染在全球范围内引起明显的发病率和死亡率。这些病原体很容易获得抗菌耐药性(AMR),进一步强调了它们的临床意义。第三代耐甲状腺孢菌素和耐碳苯甲状腺菌(例如,大肠杆菌和克雷伯斯氏菌SPP),抗多药的铜绿假单胞菌,铜绿假单胞菌,以及耐碳酸苯甲酸杆菌的抗碳酸盐症,并已识别为识别的问题,并且已经识别出了问题。在响应中,已经开发了几种旨在快速检测AMR的新诊断技术,包括生化,分子,基因组和蛋白质组学技术。过去十年还看到了多种抗生素的许可,这些抗生素改变了这些具有挑战性的感染的治疗景观。
目前,糖尿病的全球患病率估计约为5.37亿人,预测可能会增加到2045年的7.83亿人(Ahmad等人,2022年)。糖尿病脚是糖尿病最严重的并发症之一,大约1/3糖尿病患者有感染的风险(Deng等,2023; McDermott等人,2023年),导致感染,溃疡或组织破坏脚尖周围。这种情况通常发生在下肢中的周围神经病或不同程度的动脉阻塞(Van Netten等,2020)。dfus经常出现在糖尿病病史延长的老年患者中。这些个体通常在外周血血管中表现出不同程度的狭窄或闭塞性病变,通常与神经系统和血管病理相关(Abdissa等,2020)。研究表明,神经病是溃疡形成的主要催化剂。脚部的感觉受损,再加上针对异常压力的预防措施不足,使这些患者感染易感性,从而加剧了溃疡的发展(Liu等,20222)。在溃疡开始时,经常没有得到足够的初始注意力,影响了该区域和深度倾向于膨胀,可能会延伸到骨骼。这种进展通常伴随着多数菌感染,在临床管理中提出了重大挑战。在溃疡的初始形成之后,通常会接受最少的治疗,病变扩大并加深,可能扩大到骨骼。这种发展经常伴随着多数疾病,这会引起相当大的治疗问题。根据报道,大多数DFUS感染表现出多种耐药性,尤其是在革兰氏阳性生物中,葡萄球菌是普遍的病原体(Coskun等,2024; Guo等,2023; Morton and Coghill; Morton and Coghill,2024; 2024; Wu等人,2018年)。滥用抗生素的日益增加导致患有多药抗性生物(MDROS)感染的患者数量增加,使治疗工作变得复杂(Du等,2022; Yang等,2024)。这些患者经常经历长时间住院时间,并产生明显的医疗费用。在严重的情况下,坏死和感染的水平可能无法控制,需要截肢,这可能会带来威胁生命的风险(Armstrong等,2023; Hung等,2024; Quilici等,2016)。MDROS是DFUS感染患者的普遍病原体(Guo等,2023; Yang等,2024)。这个问题尤其与感染致病生物的DFU患者中有关,因为MDROS的患病率的增加很大程度上归因于滥用抗生素。但是,管理MDROS-DFUS由于严重的溃疡缺血,广泛的组织坏死和MDROS感染而对临床医生提出了重大挑战。常规治疗通常是不足的,需要采用多学科手术,结合血管外科手术,内分泌学,传染病管理,骨科和其他相关领域(Armstrong等,2023; Bloomgarden,2023)。用于治疗经典DFU,大多数临床医生都喜欢手术去除患病的组织或骨骼
nvasive脑膜炎球菌疾病(IMD)是由革兰氏阴性细菌脑膜炎植物引起的。感染会引起侵入性和威胁生命的感染,包括脑膜炎和脑膜炎症(1,2)。imd是由6个染色的1个血清群中的1个,a,b,c,x,y或w(1)引起的。全球IMD分配各不相同;但是,太平洋岛国国家的疾病负担尚未得到充分记录。来自澳大利亚和新西兰的研究报道了1990年代由脑膜核血清群B(MENB)和C(MENC)引起的流行和流行趋势(3,4),但在常规疫苗接种后IMD病例后,IMD病例的主要减少(5,6)。2018年,IMD爆发发生在斐济,这是一个小岛发展州,截至2017年,人口为884,887(7)。 卫生服务由卫生和医疗服务部(MOHMS)管理,该部分为四个部门:中央,西部,北部和东部。 每个部门都是fur-2018年,IMD爆发发生在斐济,这是一个小岛发展州,截至2017年,人口为884,887(7)。卫生服务由卫生和医疗服务部(MOHMS)管理,该部分为四个部门:中央,西部,北部和东部。每个部门都是fur-
摘要 某些细菌群的多重耐药性 (MDR) 与医院内感染 (HAI) 有关,这代表着全球传染病诊断和治疗方面日益严峻的挑战。它给全球医疗机构的卫生管理带来了大多数问题;这涉及到功效和有效性,从而破坏了世界卫生组织 (WHO) 等医疗机构在遏制新出现和重新出现的公共卫生重大疾病方面的努力。多重耐药性 (MDR) 是由于自古以来对抗生素的管理不当造成的,这种抗生素的不当使用,尤其是广谱抗生素的使用,导致了抗菌素耐药性细菌的出现和传播,从而导致在医疗机构环境中选择了高度耐药的细菌病原体。医院内感染,特别是由 MDR 细菌引起的感染,通常很难治疗,导致各种副作用,包括延长住院时间和增加治疗费用,从而影响人体的天然微生物群。同样,新型抗菌剂的开发也滞后,目前很少有新型抗菌剂在开发中。因此,寻找治疗院内感染的新方法可能有助于克服细菌病原体的多重耐药性挑战。目前,正在通过修改现有药物、使用新型金属复合物、抗菌肽和反义抗菌疗法来开发新型治疗剂,以找到解决院内致病菌多重耐药性的持久解决方案。关键词:抗菌药物、细菌、多重耐药、院内、耐药性。引言院内感染(医院内感染)也称为医院相关感染 (HAI),在世界范围内的死亡率中占较大比例,并且与住院时间延长和治疗费用大幅增加有关。根据欧洲疾病预防和控制中心 (ECDC) 的数据,欧洲急症医院和长期护理机构每年共发生 890 万例 HAI(Sursten 等人,2018 年)。感染风险较高的人群包括重症监护、外科、肿瘤科/血液科、烧伤科的患者以及接受器官移植的患者和新生儿(WHO,2018 年)。最常见的院内感染是导管相关尿路感染 (CAUTI)、手术部位感染 (SSI)、中心静脉导管相关血流感染 (CLABSI)、呼吸机相关肺炎 (VAP) 和艰难梭菌感染 (CDI)(Stygal 等人,2020 年)。细菌性院内感染的几种来源
摘要。背景/目的:P-糖蛋白 (P-gp) 的过度表达是多药耐药 (MDR) 的主要机制。与 Janus 激酶 2 (Jak2) 抑制剂联合治疗可使 P-gp 过度表达的耐药癌细胞敏感。在本研究中,我们评估了目前处于 III 期临床试验中的 Jak2 抑制剂帕克替尼。材料和方法:进行显微镜观察、细胞活力测定、菌落形成测定、罗丹明摄取试验、膜联蛋白 V 分析、荧光激活细胞分选 (FACS) 和蛋白质印迹分析,以进一步研究作用机制。结果:我们发现当将帕克替尼与长春新碱 (VIC) 一起施用给 P-gp 过度表达的耐药 KBV20C 细胞时,帕克替尼降低了细胞活力,诱导了 G2 停滞,并上调了早期细胞凋亡。此外,VIC-帕克替尼治疗细胞中的细胞凋亡和 G2 停滞与 pH2AX 表达的上调有关。帕克替尼的 P-gp 抑制活性比二甲基亚砜 (DMSO) 处理的对照高出约 2 倍,表明 VIC-帕克替尼致敏涉及帕克替尼的 P-gp 抑制作用。与 VIC 类似,其他抗有丝分裂药物(长春瑞滨、长春花碱和艾日布林)也可以通过与帕克替尼联合治疗对 KBV20C 细胞产生致敏作用。此外,将帕克替尼与之前鉴定的 Jak2 抑制剂进行比较表明,在 KBV20C 细胞中,VIC-帕克替尼组合在较低剂量下具有与 VIC-CEP-33779 或 VIC-NVP-BSK805 组合类似的致敏作用。总体而言,Jak2 抑制剂和 VIC 联合治疗通过诱导早期细胞凋亡来增敏 P-gp 过表达的耐药癌细胞。结论:总的来说,pacritinib 诱导 G 2 停滞,降低细胞活力,具有高 P-gp 抑制活性,并上调
结果:结果表明,所有40种分离的大肠杆菌菌株均表现出对磺胺嗪钠,Enrorofuins和环丙沙星的耐药性,其中90%的菌株易受多型多糖质B。值得注意的是,应变11、23和24表现出严重的抗性。抗生素耐药性基因TEM-1,TEM-206,Stra,Strb,Qach和Blactx的检测率为100%,表明这些基因的患病率很高。此外,大多数菌株携带抗生素抗性基因与其抗性表型一致。wg菌株11、23和24个揭示了4,897,185 bp,4,920,234 bp和4,912,320 bp的基因组大小。这些菌株分别携带两个,一个和两个质粒。抗生素抗性基因的预测显示了基因组中的这些基因中的大量数量,菌株24具有最高数量,总计77个含有88种抗生素耐药基因的亚种。
铜绿假单胞菌中的耐药性已通过多种机制介导,它们中排出泵介导的耐药性是耐药性最重要的机制之一。MEXAB-OPRM外排泵,能够识别和排出细菌细胞中各种结构无关的化合物,赋予对铜绿假单胞菌中广泛的抗生素的抗性。本研究的目的是筛选在印度传统医学中使用的药物,以发现一些能够抑制铜绿假单胞菌中的Mexab-Oprm泵的有效化合物,并研究具有抗抗性抗生素的特征性外排泵抑制剂的协同作用(MDR)抗生素(MDR)抗生素(MDR)菌株。在本研究中使用了100个临床分离株,四个敲除和1个MTCC-741标准菌株。所有100个临床分离株均已处理用于抗生素易感性测定法和ETBR琼脂卡特轮测定法以测定MDR表型。总共筛选了40种植物,以存在具有外排泵抑制活性的化合物。用三种不同的抗生素进一步探索了表现出EPI活性的植物的协同作用。十种植物提取物已显示出相当大的EPI活性,并且在10个活性提取物中,只有一种末期佳肴果实的甲醇提取物显示出与A组(环丙沙星,四环素和氯霉素)的协同活性。T. chebula果实提取物的分馏和纯化提供了乙酸乙酯,该乙酸酯与A组抗生素以及显着的EPI活性一起显示了协同活性。本研究的结果得出的结论是,乙酸酯是铜绿假单胞菌中过度表达Mexab-Oprm外排泵的有效EPI,可以与耐药组A抗生素一起使用,以抗多药抗性P. eruginosa。
摘要:化疗在肿瘤治疗中被广泛应用。然而,多药耐药性(MDR)的发展削弱了抗癌药物对肿瘤细胞的有效性。这种耐药性常常导致肿瘤复发、转移和患者死亡。幸运的是,基于纳米颗粒的药物输送系统通过共同输送多种药物和 MDR 逆转剂以及巧妙、灵活、智能地修改药物靶标提供了一种有前途的策略。此类系统已证明能够绕过因耐药性而导致的 ABC 转运蛋白生物外排机制。因此,如何输送药物并发挥潜在的抗肿瘤作用已被成功探索、应用和开发。此外,为了克服多药耐药性,基于纳米颗粒的系统因其良好的治疗效果、低副作用和高肿瘤转移抑制率而得到了开发。鉴于此,我们系统地讨论了纳米治疗中 MDR 的分子机制和治疗策略。最后,我们总结了克服 MDR 的有趣想法和未来趋势。
简介:每天需要精神病治疗的人数从每天由于心理健康问题而增长。因此,每个人的药物数量有所增加,导致精神上的多药。有几个好处,但是有几种风险。中毒的风险脱颖而出。因此,对精神上的多药和中毒的风险进行了质疑,进行了研究。目的:通过当前的文献分析来自精神多药的中毒的风险。方法:系统文献综述,通过搜索拉丁美洲和加勒比健康科学,Google Scholar和Scientific Electronic Library Online,使用描述符:Polypharmacy;精神技术;中毒;中毒。因此,选择了六篇文章,这些文章构成了本研究的包含和排除标准。结果:研究列出了精神上的一多药很常见,但是,没有科学证据的组合,没有与其他专业人员对话的处方和不足的对话可能会导致各种风险。因此,多药患者中毒的风险很大,可能会对个人的健康产生灾难性影响,甚至导致死亡。结论:很明显,知识传播有关多药和中毒的风险,以及改善专业人员之间的沟通,以全面的全面方式观察患者的沟通,以及证据对知识传播,对于最小化错误的组合,不正确的规定,不必要的多种药物和对患者的风险和其他影响和其他影响和其他影响和其他影响。