药物再利用已成为一种重要策略,在确定 COVID-19 的治疗应用方面具有巨大潜力。对 4193 种 FDA 批准的药物进行了广泛的虚拟筛选,这些药物针对 SARS-CoV2 的 24 种蛋白(NSP1-10 和 NSP12-16、包膜、膜、核蛋白、刺突、ORF3a、ORF6、ORF7a、ORF8 和 ORF9b)进行了筛选。根据对接得分,将药物分为前 10 名和后 10 名药物,然后根据其治疗适应症的分布进行分类。结果发现,排名前 10 位的药物具有治疗癌症、疼痛、神经系统疾病以及病毒和细菌性疾病的适应症。由于耐药性是抗病毒药物研发面临的主要挑战之一,本研究采用多药理学和网络药理学方法,识别与多个靶点相互作用的药物,并在多靶点药物中识别出二氢麦角胺、麦角胺、双地喹氯铵、米哚妥林、替莫泊芬、替拉扎特和维奈克拉等药物。此外,对多靶点药物相关基因进行了通路分析,以深入了解药物的作用机制,并识别出与 SARS-CoV2 有关的可靶向基因和生物学通路。
摘要:肠杆菌目是一大群革兰氏阴性细菌,由致病性和非致病性成员组成,包括有益的共生肠道微生物群。致病成员会产生多种致病或毒力因子,从而增强其致病特性并增加感染的严重程度。肠杆菌目成员还会对常见的抗菌剂产生耐药性,这种现象称为抗菌素耐药性 (AMR)。已知许多致病肠杆菌目成员具有抗菌素耐药性。本综述讨论了多重耐药肠杆菌,特别是大肠杆菌和一些与肠杆菌目成员有相似之处的其他细菌物种的毒力因子、致病性和感染。我们还讨论了用于对抗它们引起的感染的传统和现代方法。了解致病菌产生的毒力因子将有助于开发治疗它们引起的感染的新策略和方法。
本文引入了一种新型的多代理增强学习(RL)方法,用于1型糖尿病患者(T1D)的个性化葡萄糖控制。所提出的方法利用了由血糖(BG)代谢模型和多代理角色批评的RL模型组成的闭环系统,该模型充当基底核糖顾问。在三种不同的情况下,评估RL药物的性能并与常规疗法进行了比较。评估指标包括最低,最大和平均葡萄糖水平,以及在二型BG范围内所花费的时间百分比。此外,分析了平均每日推注和基底胰岛素剂量。结果表明,基于RL的基底支柱顾问可通过降低血糖变异性并增加目标范围内70-180 mg / dl的时间的比例来显着改善葡萄糖的控制。具体来说,在方案A,B和C中,目标范围内花费的时间从66个增加。66±34。97%至92。55±4。05%,64。13±33。84%至93。91±6。03%和58。85±34。67%至78。 34±13。 分别为28%。 基于RL的方法还可以防止严重的高血糖事件(P≤0。 05)并减少低血糖的发生。 对于场景A和B,降血糖事件从14个下降。 2%±32。 27%至3.77%±4.01%和16。 59%±32。 分别为42%至2.63%±4.09%。 05)。67%至78。34±13。分别为28%。基于RL的方法还可以防止严重的高血糖事件(P≤0。05)并减少低血糖的发生。对于场景A和B,降血糖事件从14个下降。2%±32。27%至3.77%±4.01%和16。59%±32。分别为42%至2.63%±4.09%。05)。值得注意的是,在情况C中,由于胰岛素敏感性的降低,在任何一种方法中均未经历降血糖事件。此外,该研究表明,与常规治疗相比总的来说,这些发现表明多代理RL方法在获得更好的葡萄糖控制方面具有EFF的性质,并减轻T1D患者严重高血糖的风险。
高度脂溶性,主要通过血脑屏障的疏水性概念,因此维生素 A、D、E、K 主要从血液循环迁移到脂肪组织,然后到达血脑屏障。因此,尽管疏水性很重要,但除了疏水性之外,还有其他因素参与了这一活动,例如,药物运输到药物靶器官的细胞,运输可能根据已知的运输机制进行,例如,根据药物浓度的被动扩散,从高浓度的细胞或器官外运输到细胞或器官内,主动运输,即药物的转移和需要
尽管对 CLL 治疗有效(1, 2),但大多数缓解是不完全的。此外,大多数患者(包括那些经历完全临床缓解的患者)都表现出耐药性、持续存在的癌细胞,可通过先进的分子技术检测到(3)。从头耐药癌细胞(即在开始治疗前发现)是复发的潜在来源(4)。持续显示无法检测到的持续性癌细胞(即微小残留病阴性)的患者经常会获得良好的长期治疗结果(1, 5, 6)。证据表明,体内微环境相互作用激活了 CLL 细胞对 VEN 的抗凋亡机制。这种抗性被认为发生在淋巴结 (LN) 微环境(“保护性微环境”)中,CLL 细胞在此遇到促存活信号,最近的数据与这一观察结果一致(1, 2, 4)。已知使用伊布替尼 (IBR) 治疗可从部分患者的保护性淋巴结中清除 CLL 细胞 (7–9)。我们和其他研究人员已在 CLL 或 MCL 患者中测试了 IBR 与 VEN 的联合治疗,以利用 IBR 诱导的淋巴细胞增多症在体内产生的治疗脆弱性 (10–14),以及这些药物在体外的协同作用 (15–17)。尽管临床数据显示,这种联合治疗在大多数 CLL 或
金黄色葡萄球菌是世界上最致命的病原体之一,这种生物体的抗性菌株的升高导致许多威胁生命的医疗状况。这种革兰氏阴性菌可能会引起一系列疾病,从轻微的皮肤感染到严重感染,例如毒性休克综合征或心内膜炎,并且在美国导致的死亡人数比任何其他耐药性病原体都要多。每年由于虫球菌感染而在美国每年在美国发生1,2个门诊和急诊室就诊和464 000次住院。3随着抗生素的使用正在上升,医院中多药的抗菌菌株正在出现,最值得注意的是耐甲氧西林的金黄色葡萄球菌(MRSA),事实证明,传统抗生素的感染是徒劳的。
摘要我们开发了一种允许人们在单细胞培养样品中测试大量药物组合的方法。我们依靠单个细胞中药物摄取的随机性作为创建和编码药物治疗方案的工具。用荧光条形码药物的组合处理一个包含数千个细胞的单个样品。我们在细胞培养样品中创建独立的瞬时药物梯度,以产生异质的局部药物组合。在孵育期后,记录每个细胞的随后的表型和相应的药物条形码。我们使用这些数据用于宏观细胞种群中对药物的治疗反应的统计预测。为了进一步应用这项技术,我们开发了一种不需要任何化学药物修饰的荧光条形码方法。我们还开发了无分段的图像分析,能够处理样品中包含数千个细胞的大型光场,即使在汇合生长条件下也是如此。在大多数生物实验室中,可以很容易地获得执行我们方法所需的技术,不需要机器人或微流体设备,并且会大大减少传统高通量研究的资源需求和产生的成本。
1 美国纽约州纽约市哥伦比亚大学欧文医学中心微生物学和免疫学系;2 新西兰达尼丁奥塔哥大学微生物学和免疫学系;3 新加坡科技研究局 A*STAR 传染病实验室;4 日本长崎大学热带医学研究所原生动物学系;5 英国伦敦弗朗西斯克里克研究所疟疾生物化学实验室;6 英国伦敦卫生与热带医学院传染病和热带病学院;7 美国佐治亚州雅典佐治亚大学热带和新兴全球疾病中心;8 英国欣克斯顿威康桑格研究所寄生虫和微生物项目; 9 11-INSERM U1184,病毒感染和自身免疫性疾病免疫学,传染病模型和创新疗法系,弗朗索瓦雅各布生物学研究所,基础研究方向,原子能和替代能源委员会-巴黎南部大学,丰特奈-奥-玫瑰,法国;10 新加坡南洋理工大学李光前医学院,新加坡;11 新加坡南洋理工大学生物科学学院,新加坡;12 哥伦比亚大学欧文医学中心医学系传染病科疟疾治疗和抗菌素耐药性中心,纽约,纽约,美国;13 新加坡国立大学杨潞龄医学院微生物学和免疫学系,新加坡
摘要:败血症和败血性休克在重症患者中很常见,并且按照幸存的败血症运动(SSC)的建议,早期的经验性抗菌疗法(在第一个小时内都特别是至关重要的,对于成功管理这些疾病至关重要。要有效,还必须适当地给药:药物应涵盖最可能的病原体并在感染部位达到有效浓度。但是,由于这些患者的临床状况迅速并随着时间的推移会改善或恶化,因此危重患者的药代动力学经常发生变化,并不断改变。,在重症监护病房(ICU)中,优化抗菌药物给药至关重要。这本微生物的特刊研究了在患有MDR感染的重症患者中采用的流行病学,诊断创新和策略。
感染的治疗现在受到循环细菌菌株中多药的持续高度流行率的阻碍[1-14]。感染抗生素抗性细菌,例如多药(MDR)结核病,结核病,抗性霉素 - 耐华肠球菌和耐甲基甲基甲基甲基甲基甲基葡萄球菌的葡萄球菌(MRSA),造成广泛的影响,从而造成了较大的影响。这引发了人们对探索替代抗菌剂(例如植物)的探索的兴趣,这些抗菌药物可能有效地针对多药病原体[20-23]。植物桉树植物符合这种概况。它原产于澳大利亚,它用于治疗尿,胃肠道和呼吸道的喉咙痛和细菌感染[24]。它在加纳也广泛可用,可以在国家文化中心库马西(Kumasi)的正面找到,其土著人认为这对于治疗与心脏有关的疾病,溃疡,沸腾,伤口,泌尿生成系统,肝脏,肝脏和肾脏石头的疾病是有用的。尽管已经揭示了该植物含有植物化学物质,例如单宁,糖苷,类黄酮,酯和萜烯,并且已知其茎的树皮表现出抗螺旋细菌的幽门螺杆菌活性[25],其叶子的抗菌活性尚未得到充分探索。因此,这项研究研究了E的不同粗提取物的作用。Grandis在选定的多药耐药细菌上放置,以帮助将抗菌剂的光谱从自然资源中扩展。