随着计算机技术、通信技术和集成电路技术的发展,多种总线标准应运而生。其中1553B(MIL-STD-1553B)是美国于1978年发布的串行多路复用数据总线标准,是有关数据总线电气特性和通信协议规范的军用标准,规定了飞机内部数字命令/响应时间多路复用数据总线的技术要求,以及多路复用数据总线的操作、总线上信息流的格式和电气要求,提供了在不同系统之间传输数据和信息的介质。1553B总线作为第一代军用数据总线,最初是为战斗机内部电子系统联网标准而提出的,以其可靠性高、速度快、技术成熟、易于扩展等特点,已从飞行控制系统逐步推广到导弹、舰船、航空航天等领域,历经30多年无故障运行,被誉为军队的一张防护网。近年来,1553B总线已成为我国现役空军最重要的先进航空电子系统数据总线,在舰船车辆、坦克舰艇等武器装备技术水平提高中发挥了重要作用[1]。
电化学生物传感器已成为通过非侵入性汗液分析跟踪人体生理动态的有前途的工具之一。然而,以高度可控和可重复的方式集成多路复用传感器以实现长期可靠的生物传感仍然是一个关键挑战,尤其是在灵活的平台上。本文首次报道了一种完全喷墨打印和集成的多路复用生物传感贴片,它具有极高的稳定性和灵敏度。这些理想的特性是通过独特的互穿界面设计和对活性材料质量负载的精确控制实现的,这要归功于优化的油墨配方和液滴辅助打印工艺。该传感器对葡萄糖的灵敏度为 313.28 μ A mm − 1 cm − 2,对酒精的灵敏度为 0.87 μ A mm − 1 cm − 2,并且在 30 小时内漂移最小,这是文献中最好的。集成贴片可用于可靠、无线的饮食监测或通过表皮分析进行医疗干预,并将促进可穿戴设备在智能医疗应用方面的进步。
未来的量子网络将具有配备多个量子存储器的节点,从而允许多路复用 14 和纠缠蒸馏策略,以提高交付率并减少端到端 15 纠缠分发的等待时间。在这项工作中,我们引入了用于多路复用量子中继器 16 链的准局部策略。在完全局部策略中,节点仅根据对自身状态的了解做出决策。在我们的 17 准局部策略中,节点增加了对中继器链状态的了解,但不一定是 18 完整的全局知识。我们的策略利用了这样的观察结果:对于节点必须做出的大多数决策 19,它们只需要掌握有关它们所属链的连接区域的信息,而不是整个 20 链。通过这种方式,我们不仅获得了优于局部策略的性能,而且还降低了全局知识策略固有的经典 21 通信 (CC) 成本。我们的策略在实际相关的参数范围内也优于众所周知的、被广泛研究的嵌套净化和加倍交换策略。我们还仔细研究了纠缠蒸馏的作用。通过分析和数值结果,我们确定了蒸馏有意义且有用的参数范围。在这些范围内,我们还解决了以下问题:“我们应该先蒸馏再交换,还是反之亦然?”最后,为了提供进一步的实用指导,我们提出了一种基于多路复用的中继器链的实验实现,并通过实验演示了关键元素,即高维双光子频率梳。然后,我们通过对两个具体内存平台(即稀土离子和金刚石空位)的模拟结果,评估了我们基于多路复用的策略在这种真实网络中的预期性能。
摘要 — 本文介绍了一种低功耗 (LP) 面积高效的植入式神经记录系统,该系统支持高密度神经植入 (HDNI) 应用。该系统采用时分多址方法同时记录 16 个神经电极。最小均方 (LMS) 算法用于通过使用单抽头数字自适应滤波器 (AF) 同时消除所有通道的缓慢变化电极偏移。所提出的技术采用 65 纳米 CMOS 技术制造,每通道面积为 0.00248 mm 2 ;其中 68% 是数字电路(因此可通过技术扩展)。整个系统每通道功耗为 3.38 µW,同时在 10 kHz 带宽内实现 2.6 µV rms 的输入参考噪声 (IRN)。所提出的系统的噪声效率因子 (NEF) 为 1.83,并且完全集成在芯片上。
全球数据流量的指数增长需要光学网络技术的持续进步。超高速度,低延迟和高度可配置的光网络需要云计算,人工智能和物联网(IoT)等新兴趋势。研究人员正在研究新方法,包括轨道角动量(OAM)多路复用,太空层多路复用(SDM)和量子键分布(QKD),以克服这些障碍。这些新技术都可以大大提高光网络的容量,速度,可扩展性和安全性。通过在单个光纤上发送多个信号,SDM和OAM多路复用可以扩大网络容量。相反,QKD使得可以在较大距离上安全地发送数据。此外,可以通过使用机器学习(ML)和人工智能(AI)来改善故障管理,资源分配和光网性能。预计光网络的领域将通过这些新技术的结合进行革命。在本研究中彻底研究了开发光学网络技术及其可能使用的当前状态。我们提供了有关光学网络未来的见解,并讨论了使用这些技术带来的潜力和问题。
全球数据流量的指数增长需要光学网络技术的持续进步。超高速度,低延迟和高度可配置的光网络需要云计算,人工智能和物联网(IoT)等新兴趋势。研究人员正在研究新方法,包括轨道角动量(OAM)多路复用,太空层多路复用(SDM)和量子键分布(QKD),以克服这些障碍。这些新技术都可以大大提高光网络的容量,速度,可扩展性和安全性。通过在单个光纤上发送多个信号,SDM和OAM多路复用可以扩大网络容量。相反,QKD使得可以在较大距离上安全地发送数据。此外,可以通过使用机器学习(ML)和人工智能(AI)来改善故障管理,资源分配和光网性能。预计光网络的领域将通过这些新技术的结合进行革命。在本研究中彻底研究了开发光学网络技术及其可能使用的当前状态。我们提供了有关光学网络未来的见解,并讨论了使用这些技术带来的潜力和问题。
量子纠缠不仅对于基本物理学,而且对于各种应用至关重要[1],从量子通信和量子计算到量子计量学。随着通道损失的影响随距离的指数增加,其在长距离通道上的分布[2]变为资源密集型。尝试建立具有故障耐受性的非本地逻辑量子纠缠时,这一挑战尤其明显[3],在这种情况下,实现复杂性随逻辑量子的冗余而升级。有希望的节奏在于光学量子多路复用,它使用高维Qudit而不是量子来编码单个光子,从而使更高的信息能力和较高的噪声弹性能力[4]。因此,将量子多路复用与容忍分布式量子量相结合可以大大提高效率并降低所消耗的资源。最近,Li等人。 [5]提出了一项可行的预言方案,将两个空间分离的逻辑量子位直接与带有时间键编码Qudit的单个光子的传输纠缠在一起。 在这里,Li和他的同事首次展示了量子多路复用对故障量量子信息处理的强大能力。 采用的协议利用了高维单光子和最近,Li等人。[5]提出了一项可行的预言方案,将两个空间分离的逻辑量子位直接与带有时间键编码Qudit的单个光子的传输纠缠在一起。在这里,Li和他的同事首次展示了量子多路复用对故障量量子信息处理的强大能力。采用的协议利用了高维单光子和
多路复用器。在吉尔吉斯共和国,除了国家通信运营商 Kyrgyztelecom OJSC,还有 Digital Technologies LLC,该公司是私营广播公司所谓的社会数字电视频道套餐的运营商。尽管数字广播服务成本高昂,但社会套餐(现在是多路复用 1 和多路复用 2)免费提供给该国人口。这更有价值,因为根据媒体政策研究所的数据,尽管互联网信息渠道的作用日益增强,但电视仍然是向民众传播信息的主要媒介。这种媒体消费观点也得到了 2021 年对吉尔吉斯共和国 7 至 17 岁儿童和青少年媒体消费 14 的研究结果的支持。
利用先进的功能性和多路复用单细胞测序技术剖析胃癌中的染色体不稳定性及其在免疫编辑中的作用