在每个书签处以及影片结尾处,都有要提出和讨论的问题,如本包中所述。您的角色是确保小组充分涵盖每个要点。每个问题都以粗体显示。这不是脚本 - 您可能希望讨论其他内容,或者可能会出现其他问题,但这些是要涵盖的关键点。
Onyema Ogbuagu 医学博士,吉利德科学公司(顾问/咨询师,酬金);ViiV(顾问/咨询师);杨森(顾问/咨询师)。Joseph P. McGowan 医学博士无需披露。Ann Stapleton 医学博士,葛兰素史克(顾问)。Andrew Wiznia 医学博士,吉利德科学公司(顾问/咨询师),杨森(顾问/咨询师)。Daniel S. Berger 医学博士,吉利德科学公司(股票/债券)。Catherine M. Creticos 医学博士,吉利德科学公司(发言人);Theratechnologies(发言人);ViiV(发言人)。Debbie Hagins 医学博士,吉利德科学公司(顾问/咨询师)。Olayemi Osiyemi 医学博士,吉利德科学公司(顾问/咨询师,发言人);默克(顾问/咨询师); ViiV(顾问/咨询师,发言人)。James Sims 医学博士无需披露任何信息。David A. Wheeler 医学博士,吉利德科学公司(研究经费);杨森(研究经费);阿斯利康(研究经费)。Hui Wang 博士、Nicolas A. Margot 文学硕士、Hadas Dvory-Sobol 博士和 Martin S Rhee 医学博士均为吉利德科学公司的员工和股东。Sorana Segal-Maurer 医学博士,在进行研究和数据分析时:吉利德科学公司(顾问/咨询师,资助/研究支持,酬金);杨森(酬金);ViiV(酬金);Theratechnologies(顾问/咨询师)。Sorana Segal-Maurer 医学博士现为吉利德科学公司的员工和股东。
KRAS的摘要突变激活通常发生在肺癌发生中,并且随着美国食品和药物管理局最近批准KRAS G12C的共价抑制剂,例如Sotorasib或Adagrasib,KRAS癌蛋白是非小细胞肺癌(NSCLC)的重要药理靶标。但是,并非所有KRAS G12C驱动的NSCLC都对这些抑制剂做出反应,并且那些反应反应的患者的耐药性出现可能是迅速而多效的。因此,基于共价抑制KRAS G12C的支柱,正在努力开发有效的组合疗法。在这里,我们报告说,KRAS G12C信号传导的抑制会增加KRAS G12C表达肺癌细胞的自噬。此外,DCC -3116(一种选择性ULK1/2抑制剂)的组合以及sotorasib显示了对人Kras G12C驱动的肺癌细胞增殖的合作/协同抑制体内体外和肿瘤对照中的抑制作用。此外,在KRAS G12C驱动的NSCLC的基因工程小鼠模型中,抑制KRAS G12C或ULK1/2的抑制会减轻肿瘤负担并增加小鼠的存活率。因此,这些数据表明ULK1/2介导的自噬是对肺癌中KRAS G12C抑制的药理作用的细胞保护胁迫反应。
在这些书签中以及电影的结尾处,如此包中概述了一些问题要询问和讨论。您的角色是确保小组充分涵盖每个要点。每个问题都是粗体。这不是脚本 - 您可能希望讨论其他内容,或者可能会出现其他问题,但是,这些是要涵盖的关键点。
大小标准由已知长度的荧光标记 DNA 片段组成,可作为分子标尺。大小标准标记的荧光染料与 MLPA 探针产品不同。当片段根据大小迁移时,毛细管电泳仪中的检测器会检测到大小标准和 MLPA 扩增子的荧光 - 小片段比大片段通过得更快。将每个 MLPA 扩增子的迁移与大小标准的每个片段的迁移进行比较,以确定大小,从而确定 MLPA 扩增子的身份。
基于 CRISPR 的基因激活 (CRISPRa) 是一种通过以组织/细胞类型特异性的方式靶向启动子或增强子来上调基因表达的策略。在这里,我们描述了一个实验框架,该框架将高度多路复用的扰动与单细胞 RNA 测序 (sc-RNA-seq) 相结合,以识别细胞类型特异性、CRISPRa 响应的顺式调控元件及其调控的基因。将许多 gRNA 的随机组合引入许多细胞中的每一个,然后对其进行分析并分成测试组和对照组,以测试 CRISPRa 对增强子和启动子的扰动对邻近基因表达的影响。将该方法应用于 493 个 gRNA 文库,这些 gRNA 靶向 K562 细胞和 iPSC 衍生的兴奋性神经元中的候选顺式调控元件,我们识别出能够特异性上调预期靶基因且 1 Mb 内没有其他邻近基因的 gRNA,包括导致神经元中六种自闭症谱系障碍 (ASD) 和神经发育障碍 (NDD) 风险基因上调的 gRNA。一致的模式是,单个增强子对 CRISPRa 的响应受细胞类型的限制,这意味着成功激活基因依赖于染色质景观和/或其他反式因子。本文概述的方法可能有助于大规模筛选以细胞类型特异性方式激活基因的 gRNA。
荧光寿命成像显微镜(FLIM)是区分荧光分子或探测其纳米级环境的强大工具。传统上,FLIM使用时间相关的单光子计数(TCSPC),由于其对点检测器的依赖,因此精确但本质上的低通量。尽管时间门控摄像机已经证明了具有致密标记的明亮样品中高通量FLIM的潜力,但尚未广泛探索它们在单分子显微镜中的使用。在这里,我们报告了使用商业时间门控的单光子摄像头快速准确的单分子flim。我们优化的采集方案以仅比TCSPC少三倍的精度实现单分子寿命测量,同时允许同时进行超过3000个分子的多种多样。使用这种方法,我们证明了在受支持的脂质双层上的大量标记的孔形成蛋白以及在5-25 Hz处的多重时间单分子恢复能量传递测量值的平行寿命测量。此方法具有前进的多目标单分子定位显微镜和生物聚合物测序的有力希望。
Cellular and fluid material contained on swabs from eyes, ears and throat, skin, sites, wounds, burns, ulcers and abscesses Catheter tips, drainage fluids, bile and pus Tissues, biopsies, specimens from central nervous system Tissues from patients with blast or other traumatic injury Sinus aspirates and antral washouts Cellular fluid material contained on swabs from the Genito-urinary Tract .内主修订,椎骨盘以及相关的抽吸物和拭子的组织。
摘要 - 机器人灵巧的手负责抓握和灵巧的操纵。电动机的数量直接影响了此类系统的敏捷性和成本。在本文中,我们提出了Muxhand,这是一种使用时间分割多路复用电动机(TDMM)机制的机器人手。该系统允许仅4电动机独立控制9条电缆,从而显着降低了成本,同时保持高敏度。为了提高抓握和操纵任务期间的稳定性和平滑度,我们将磁接头整合到了三个3D打印的手指中。这些关节具有出色的影响力和自我测量能力。我们进行了一系列实验,以评估Muxhand的抓握和操纵性能。结果表明,TDMM机制可以精确控制连接到手指接头的每个电缆,从而实现强大的抓握和灵活的操作。此外,指尖载荷能力达到1.0 kg,磁接头有效地吸收了冲击和校正未对准而不会损坏。