快速充电电池通常使用能够通过固溶体转变连续容纳锂的电极,因为除了离子扩散之外,它们几乎没有动力学障碍。钛酸锂 (Li 4 Ti 5 O 12 ) 是一个例外,它是一种阳极,表现出非凡的倍率能力,这显然与其两相反应和两相中缓慢的锂扩散不一致。通过使用原位电子能量损失谱实时跟踪 Li + 迁移,我们发现 Li 4+ x Ti 5 O 12 中的轻松传输是由沿两相边界的亚稳态中间体中扭曲的锂多面体组成的动力学途径实现的。我们的工作表明,通过进入基态以上的能量景观可以实现高倍率能力,这可能具有与基态宏观相根本不同的动力学机制。这一见解应该为寻找高倍率电极材料提供新的机会。I
本质上,一些蛋白质自发地在活细胞中结晶。这些晶体具有生物学功能,例如蛋白质储存,病毒保护,异质催化和免疫系统激活[1,2]。由于Polyhedra的结构(其中一种细胞蛋白晶体)在2007年确定[3] [3],因此,在下一代结构生物学工具中引起了人们的注意,因为它不需要多步纯化过程或大规模结晶筛选。已经开发了几种ICPC方法,包括高通量筛选和细胞培养过程的优化。然而,在获得ICPC结构的各种蛋白质晶体方面仍有待解决的重大问题尚待解决,因为晶体通常在细胞中偶然形成。因此,将这种方法应用于蛋白质结构分析时必须克服几种技术挑战。如果可以建立一种新的ICPC方法,则预计它将成为一种更容易访问的结构分析技术。无细胞蛋白合成(CFP)是一种用于合成生物学的蛋白质制备技术,非常有效地筛选蛋白质合成[4]。但是,它被认为不适合需要大量蛋白质(例如结晶)的结构生物学工作。在这里,我们报告了使用CFPS的直接蛋白质结晶方法的无细胞蛋白质结晶(CFPC)的发展[5]。翻译反应是通过双层法进行的。1(a))。1(b))。我们(1)使用CFPS建立了小规模和快速结晶,(2)通过添加化学试剂来操纵结晶。通过用细胞质多角质病毒(CPV)感染在昆虫细胞中产生的多面体晶体(PHC)是研究最多的细胞内蛋白质晶体之一。CFPC的最关键优势是可以将反应量表和时间最小化,并且可以在反应过程中添加各种试剂。使用小麦生殖蛋白合成试剂盒(WEPRO7240表达试剂盒)进行多面体单体(PHM)的结晶,因为这些提取物已被鉴定为真核系统中蛋白质表达的最高蛋白表达活性。将含有10 m L的WEPRO7240和10 m m的mRNA溶液的20 m L反应混合物放在1.5 mL微管中,用200 m l亚amix SGC溶液覆盖,并在20°C下孵育24小时(图离心反应混合物,并收集白色沉淀(图结晶
本研究探索了新开发的结构集成表面铰接 (SISA) 系统在各种结构工程应用(如建筑外墙和太阳能电池板)中的效率。SISA 是一个模块化系统,由动态可调的三维表面面板组成,由内部线框空间结构支撑。铰接技术因面板的具体功能而异,其配置旨在通过外表面面板和内部框架之间的复合作用来优化结构性能。结合多面体和蜂窝状配置(包括四面体和凸多边形形式),对塑料、智能玻璃和金属板等材料进行了评估。该研究强调通过将现代框架系统与表面铰接相结合来提高大规模结构效率。它还探讨了建筑设计的演变,并介绍了使用基于 SISA 的结构的案例研究,以强调结构完整性的潜在改进。通过解决材料特性和设计技术,该研究旨在展示 SISA 系统如何为建筑工程带来重大进步。
两亲性聚合物纳米粒子作为优良的纳米载体,在药物递送系统(DDS)的研究中受到了极大的关注,特别是对于化疗药物、基因和蛋白质。例如,构成核-壳结构的两亲性聚合物已经应用于疏水性药物的溶解。POSS(多面体低聚倍半硅氧烷)是一种球形无机材料,尺寸为1 – 3纳米,具有高表面能和内部孔隙。作为纳米药物递送系统,POSS具有生物相容性、高载药量以及物理和生化稳定性,但对它的研究有限。1 – 9 最近,可以将抗癌药物递送到靶标并使其与肿瘤组织或细胞内体发生反应的pH敏感的靶向药物递送系统正在积极开发中。据报道,肿瘤部位的pH值比血液以及其内体和溶酶体的细胞内pH值酸性更强(约pH 5.0 – 6.0)。10 – 19
在1968年,MIT的Adolfo Guzman构建了程序,以检测场景的组成对象(“视觉场景中三维对象的计算机识别”,1968年)。Max Clowes(1971年,“看事物”)在UC Santa Cruz大学的David Huffman(“不可能的对象”(“不可能的对象)作为胡说八道的句子”,1971年)独立发现了解释Polyhedra的图片(固体图片)(Cubes and Pyramids和Alan Mackworth a Susex of Sussex of Sussey'''多面体场景”,1973年)。计算机视觉主要是在图片中识别对象,最初,主要的方法是将图片区域与典型对象的模板进行比较。Martin Fischler和Robert Elschlager在Lockhead的Palo Alto研究实验室使用“可拉伸模板”扩展了这种方法(“图形结构的表示和匹配”,1973年)。Takeo Kanade于1973年毕业于京都大学,毕业于世界上第一个自动化的面部识别系统(“计算机复杂的图片处理系统和人类面孔的识别”,1973年)。
为了证明我们方法的效果,我们就各种优化问题进行了多个NU Merical实验。对于每个问题,提供了一组来自未知可行集合的可行决策,我们生成了一个不可行的决定的人工数据集,这些决策在于使用我们的MCMC算法的已知多面体放松的组成。然后,我们训练分类器以学习可行数据集和不可行的数据集之间的分离边界。我们将我们的方法与几个未加剧的密度估计基线进行了比较,这些密度估计基线不会与补体中采样的数据相比。使用模拟的分数背包问题,我们表明我们的方法对于创建分类器至关重要,即(i)在需要可行和不可行区域之间的紧密分离边界时表现良好; (ii)当可行决策的数据集很小时。此外,我们考虑了所有Miplib [14]实例的线性性放松,少于80个变量,并证明我们基于抽样的分类器显着胜过所有基线模型。我们的实验代码可在https://github.com/rafidrm/mcmc-compomplement上找到。
在内外翻转碱基允许DNA纳米结构连续变形。一小部分瓷砖的复杂结构的抽象组装是生物学中的一个共同主题。例如,许多相同蛋白质的副本构成多面体形状的,病毒式衣壳和微管蛋白可以产生长的微管。这启发了基于瓷砖的DNA自组装纳米构造的发展,特别是对于具有高对称性的结构。在最终结构中,每种类型的图案都将采用相同的构象,无论是刚性还是具有定义的灵活性。对于没有对称性的结构,它们的组装仍然是一小部分瓷砖的挑战。为了应对这一挑战,算法的自组装是由计算科学探索的,但是尚不清楚如何将这种方法实施到一维(1D)结构。在这里,我们已经证明了构象平衡的不断变化可以使一维结构发展。如原子力显微镜成像所示,一种类型的DNA瓷砖已成功组装成DNA螺旋和同心圆,从结构的中心弯曲越来越少。这项工作指向基于瓷砖的DNA组件的新方向。
本文介绍了一种寻找配平飞行条件的方法,同时最大化一个或多个运动轴的可用控制权限。最大俯仰或升力控制权限可以在中止着陆情况下找到有趣的应用,而所有运动轴的最大平衡控制权限则是经典最小控制力概念的重新表述。配平问题以约束优化问题的形式提出。约束和目标函数是通过利用可达到力矩集的几何特性获得的,可达到力矩集是一个凸多面体,包含飞机控制效应器可达到的力和力矩。该方法应用于一种名为 PrandtlPlane 的创新型箱翼飞机配置,其双翼系统可以容纳大量控制面,因此可以实现纯扭矩和直接升力控制。在对称和非对称飞行中,比较了配平条件下的控制面偏转,其中俯仰轴、升力轴具有最大控制权限,平衡控制权限最大。结果表明,该方法能够利用攻角或油门设定来获得控制面偏转,从而最大化指定方向上的控制权。
摘要在金属添加剂制造中,具有高纵横比(AR)特征的几何形状通常与由热应力和其他相关构建故障引起的缺陷有关。理想情况下,将在设计阶段检测和删除过高的AR功能,以避免制造过程中不必要的故障。但是,AR是规模和方向独立的,并且在所有尺度和方向上识别特征非常具有挑战性。此外,并非所有高AR特征都像薄壁和细小的针头一样容易识别。因此,在添加剂制造过程的有问题特征检测领域的进一步发展需要进一步发展。在这项工作中,提出了基于从三角形的网格几何形状提取的两个距离指标的无量纲比率(d 1/ d 2)。基于此方法,具有不同特征的几何形状(例如薄壁,螺旋和多面体),以产生与AR相似的指标。将预测结果与典型几何的已知理论AR值进行了比较。通过将此度量与网格分割结合在一起,进一步扩展了该方法以分析具有复杂特征的几何形状。所提出的方法提供了一种强大,一般且有前途的方法,可以自动检测高AR功能并在制造前解决相关的缺陷问题。
摘要。由于存在提供原始特性的阳离子簇,因此在随机网络模型中无法在随机网络模型中描述阳离子的结构行为。甚至观察到可能以百分比浓度出现的阳离子观察到这些凝结过程,这使其更加壮观。尤其是,在(铝制)硅酸盐玻璃中ZR 4 + - 和Fe 2 + /Fe 3 +的结构和化学特性说明了阳离子周围的短距离顺序与纳米级异质性的形成之间的联系。这些Zr-或Fe富集的簇的结构特性相似,因为两者都是基于边缘共享阳离子多面体。阳离子也可能在网络形成位置中发生。在这种情况下,阳离子位点与硅酸盐网络连接。在这种定位中,保林规则和局部费用余额要求将有利于阳离子在纳米级稀释。对于前者而言,这两种类型的局部结构的拓扑约束比后者更强,因为与拐角共享的polyhedra相比,疾病的e ff ects较小。这可以解释这种有序异质性的生长过程中的晶体成核,从而产生了原始特性,这些特性在大量玻璃材料中所示,其中包含高科技玻璃陶瓷和火山眼镜。