稿件收到于 2022 年 3 月 28 日;修订于 2022 年 5 月 3 日;接受于 2022 年 5 月 12 日。导致这些结果的研究获得了欧盟“地平线 2020”研究和创新计划下玛丽居里资助协议编号 812790(MSCA-ETN PETER)的资助。(通讯作者:Qazi Mashaal Khan。)Qazi Mashaal Khan 就职于 ESEO 工程学院、电气和电子工程系、RF-EMC 研究小组,49107 昂热,法国,同时也就职于法国国立应用科学研究所,35708 雷恩,法国(电子邮件:qazimashaal.khan@eseo.fr)。 Lokesh Devaraj 和 Alastair Ruddle 就职于 HORIBA MIRA Limited,地址:英国纽尼顿,CV10 0TU(电子邮件:lokesh.devaraj@horiba-mira.com;alastair.ruddle@horiba-mira.com)。Mohsen Koohestani、Mohamed Ramdani 和 Richard Perdriau 就职于 ESEO 工程学院电气和电子工程系 RF-EMC 研究组,地址:法国昂热 49107,以及雷恩第一大学雷恩电子和电信研究所,地址:法国雷恩 35042(电子邮件:mohsen.koohestani@eseo.fr;mohamed.ramdani@eseo.fr;richard.perdriau@eseo.fr)。数字对象标识符 10.1109/LEMCPA.20XX.XXXXXX
EMC 测试准确性至关重要。但测试时间过长可能会花费高昂的成本,并会延迟您的产品上市时间。借助革命性的 MultiStar 多音测试仪的速度,您无需再纠结于繁琐的 EMC 辐射抗扰度测试。通过同时测试多个频率,最大限度地利用停留时间,从而提高测试速度,让您的产品更快地上市,并消除昂贵的测试室瓶颈。模拟现实世界的威胁,能够同时将 EUT 暴露于多个频率。MultiStar 多音测试仪符合 IEC 61000-4-3 和所有相关标准的要求。因此,如果您认为浪费时间就是浪费金钱,请不要纠结于此。询问有关我们新的 MultiStar 多音测试仪的信息。另外,请务必询问我们新的基于 DSP 的 EMI 接收器。速度惊人。准确性令人难以置信。
苏格兰大学苏黎世大学和苏黎世大学,瑞士神经信息学研究所B卫生技术部,丹麦·托克尼斯克大学DTU,丹麦C丹麦林格比,丹麦C丹麦C型磁力共鸣研究中心,哥本哈根大学医院HVIDOVRE,HIVIDOVRE,DENMARK DENMARK DENMARK DENMARK DENMARS DENMARK DENMARK DENMARK DENMARK DENMARK DENMARK DENMARKERIERIRE; 8248,法国巴黎,德国认知,典范,纽约州纽约州哥伦比亚大学哥伦比亚大学哥伦比亚大学电气工程系PSL研究大学,美国哥伦比亚大学,美国哥伦比亚大学哥伦比亚省哥伦比亚省哥伦比亚省哥伦比亚省大脑行为研究所,纽约州哥伦比亚大学,美国纽约州哥伦比亚大学,美国纽约市,美国纽约市,纽约州,美国纽约市,纽约州,纽约州,美国纽约市,纽约州,纽约州。纽约州纽约州曼海斯特市Feinstein医学研究所
驱动)会产生不良后果,最明显的是输出失真。本论文研究了多音驱动下的行波管 (TWT) 建模。多音驱动意味着馈送到放大器的输入信号或驱动信号的频谱具有几个不同的音调或载波,每个音调或载波都用于传输与其他载波上的信息无关的信息。即使对于中等水平的驱动信号,放大器输出上的频谱也包含输入中没有的频率内容,即输出不仅仅是输入的缩放版本。输入信号的这种失真使得随后对载波上的信息进行解码变得困难。我们研究 TWT 的物理、建模和分析,旨在提高设备性能。1.1.1 行波管 行波管是一种用于放大相干电磁波的设备,通常在微波(1-100 GHz)范围内。放大波所需的自由能来自存储在靠近电磁 (EM) 波的电子束中的直流能量。如果电子束和 EM 波的速度几乎相同,则光束中的能量会传递给波,表现为波幅增长;这种增长是由于光束-波系统固有的不稳定性造成的。在定性描述相互作用之前,我们需要简要解释一下相互作用所需的慢波引导结构。
驱动)会产生不良后果,最明显的是输出失真。本论文研究了多音驱动下的行波管 (TWT) 建模。多音驱动意味着馈送到放大器的输入信号或驱动信号的频谱具有几个不同的音调或载波,每个音调或载波都用于传输与其他载波上的信息无关的信息。即使对于中等水平的驱动信号,放大器输出上的频谱也包含输入中没有的频率内容,即输出不仅仅是输入的缩放版本。输入信号的这种失真使得随后对载波上的信息进行解码变得困难。我们研究 TWT 的物理、建模和分析,旨在提高设备性能。1.1.1 行波管 行波管是一种用于放大相干电磁波的装置,通常在微波(1-100 GHz)范围内。放大波所需的自由能来自存储在靠近电磁 (EM) 波的电子束中的直流能量。如果电子束和 EM 波的速度几乎相同,则光束中的能量会传递给波,表现为波幅增长;这种增长是由于光束-波系统固有的不稳定性造成的。在定性描述相互作用之前,我们需要简要解释一下相互作用所需的慢波引导结构。
摘要:机械应变可用于调整单层过渡金属二核苷(1L-TMD)的光学特性。在这里,从1l-wse 2薄片的上转换光致发光(UPL)用通过十字形弯曲和压痕法诱导的双轴应变调节。发现,随着施加的双轴应变从0%增加到0.51%,UPL的峰位置被大约24 nm红移。同时,对于在-157 MeV至-37 MeV之间的宽范围内的上转换能量差,UPL强度指数增加。在三种不同的激发波长为784 nm,800 nm和820 nm处的1L-WSE 2中,UPL发射在1L-WSE 2中观察到的线性和肌功率依赖性表示多音辅助的一photon photon UpConversion发射过程。1L-TMDS的应变依赖性UPL发射的结果铺平了光子上转换应用和光电设备进步的独特途径。