这项研究首先介绍了高斯莱昂纳多多项式序列。我们获得此序列的基本属性,例如生成函数,Binet的公式,矩阵形式。此外,我们使用Leonardo编号研究了编码端解码方法。最后,我们检查了向接收器发送不正确的错误检测和校正。参考文献[1] Bacaer,N。,《数学种群动力学的简短历史》,Springer-Verlag,伦敦,2011年。[2] Horadam,A。F.,《美国数学月刊》,70(3),289,1963。[3] Shannon,C。E.,《贝尔系统技术杂志》,27(3),379,1948。[4] Moharir,P。S.,IETE研究杂志,16(2),140,1970。[5] Basu,M.,Prasad,B.,Chaos,Solitons分形,41(5),2517,2009。[6] Catarino,P。M.,Borges,A.[7] Soykan,Y。,《数学进步研究杂志》,18(4),58,2021。[8]çelemoğlu,ç。[9] Gauss,C.F。,理论残留物biquadraticorum:评论Secunda,典型Dieterichtianis,1832年。[10] Halici,S.,Sinan,O。Z.
摘要。从历史上看,腐蚀抑制剂技术的探索已广泛依赖于实验方法,这些方法与大量成本,持续时间延长和大量资源利用相关。然而,ML方法的出现最近引起了人们的关注,作为研究具有腐蚀抑制特性的潜在材料的有前途的途径。这项研究通过利用多项式函数来努力提高ML模型的预测能力。具体而言,该研究重点是评估吡啶 - 喹啉化合物在缓解腐蚀中的有效性。各种ML模型进行了系统评估,并集成了多项式功能以增强其预测能力。多项式函数的整合显着放大了所有测试模型的预测精度。值得注意的是,SVR模型是最熟练的,其R²为0.936,RMSE为0.093。本询问的结果强调了通过在ML模型中掺入多项式功能促进的预测准确性的显着增强。所提出的SVR模型是预测吡啶 - 喹啉化合物腐蚀抑制潜力的强大工具。这种开创性方法为推进机器学习方法提供了宝贵的见解,该方法旨在以有希望的腐蚀抑制特性设计和工程材料。
PCE的主要特征是正交多项式家族与输入特征的统计数据之间有很强的联系。这种连接的好处是双重的。首先,如果选择正交多项式与输入数据的概率分布一致,则可以提高PCE响应表面的质量。其次,基于PCE的响应表面的利用简化了灵敏度分析和不确定性定量,因为可以在没有蒙特卡罗模拟的情况下分析地计算多种灵敏度指标。
我们引入纠缠量子多项式层次 QEPH ,作为一类可通过相互纠缠的交替量子证明进行有效验证的问题。我们证明 QEPH 会坍缩至第二层。事实上,我们表明多项式数量的交替会坍缩为仅仅两个。因此,QEPH = QRG ( 1 ) ,即具有一轮量子裁判游戏的问题类,已知包含在 PSPACE 中。这与包含 QMA (2) 的非纠缠量子多项式层次 QPH 形成对比。我们还引入了 DistributionQCPH ,它是量子经典多项式层次 QCPH 的泛化,其中证明者发送字符串(而不是字符串)上的概率分布。我们证明 DistributionQCPH = QCPH ,表明只有量子叠加(而非经典概率)才能增加这些层次结构的计算能力。为了证明这一等式,我们推广了 Lipton 和 Young (1994) 的一个博弈论结果,该结果指出,在不失一般性的情况下,证明者可以在多项式大小的支持上发送均匀分布。我们还证明了多项式层次的类似结果,即 DistributionPH = PH 。最后,我们证明 PH 和 QCPH 包含在 QPH 中,解决了 Gharibian 等人 (2022) 的一个未决问题。
摘要 —非线性控制分配是基于现代非线性动态逆的飞行控制系统的重要组成部分,该系统需要高精度的飞机气动模型。通常,精确实施的机载模型决定了系统非线性的消除效果。因此,更精确的模型可以更好地消除非线性,从而提高控制器的性能。本文提出了一种新的控制系统,该系统将非线性动态逆与基于分段多线性表示的控制分配相结合。分段多线性表示是通过对块矩阵的克罗内克积的新泛化,结合非线性函数的规范分段线性表示而开发的。还给出了分段多线性模型的雅可比矩阵的解析表达式。所提出的公式给出了分段多线性气动数据的精确表示,因此能够精确地模拟飞机整个飞行包线内的非线性气动特性。所得到的非线性控制器用于控制具有十个独立操作控制面的无尾飞翼飞机。两种创新控制面配置的仿真结果表明,可以实现完美的控制分配性能,与普通的基于多项式的控制分配相比,具有更好的跟踪性能。
摘要。我们为多项式环(RING-R1C)提出了一个均方根大小的证明系统,特别是对于形式的ℤ[𝑋]/(𝑋 + 1)的环。这些环被广泛用于基于晶格的结构中,这是许多现代现代Quantum cryp-tographic方案的基础。在这些环上为算术构建有效的证明系统受到两个关键障碍的挑战:(1)在𝑄和𝑁的实际流行选择下,环ℤ[𝑋 + + 1)不像野外,因此像Schwartz-Zippel Lemma这样的工具不能应用; (2)当𝑁很大时,这在基于晶格的密码系统的实现中很常见时,该环很大,导致证明尺寸次优。在本文中,我们解决了这两个障碍,可以更有效地证明算术比ℤ[𝑋]/(𝑋 + 1)时,当𝑄是一种“晶格友好的”模量时,包括支持快速计算或power-power-power-two moduli的模量。我们的主要工具是一种新颖的环开关技术。环开关的核心思想是将r1cs通过ℤ[𝑋]/(𝑋 + 1)转换为另一个r1cs实例,而galois环是磁场状且小的(与大小独立于𝑁)。作为(零知识)证明在密码学中有许多应用,我们希望多项式环算术的有效证明系统可以从晶格假设(例如聚合签名,群体签名,可验证的随机功能,或可证实的完全霍omororphicAppleption)中从晶格假设中产生更有效的高级基础构建。
2 t。现在,我们执行一系列k的清洁步骤,并定义K对应的超图G0⊇g 1···g k,其中gℓ是在清洁步骤(1≤ℓ≤K)之后获得的HyperGraph。在步骤ℓ我们相对于间隔i的清洁,如下所示:对于S -1顶点V 1 。 。 ,。 。 。 v s - 1,j)表示最左边的β| J |顶点w∈J使得{v 1,。 。 。 ,v s -1,w}∈E(gℓ -1),如果至少有β| J |这样的顶点,否则让Lℓ(v 1,v 2,。 。 。 v s - 1,j)是所有此类顶点w的集合。 删除所有边缘{v 1,。 。 。 ,v s - 1,w}∈E(gℓ -1),w∈Lℓ(v 1,v 2,。 。 。 v s - 1,j)。 由此产生的超图是gℓ。 按定义,对于每个给定的(s-1)-tuple v 1,v 2,。 。 。 ,v s - 1,对于每个间隔j∈Jℓ,此操作最多删除β| J |表格的边缘{v 1,。 。 。 ,v s -1,w∈J。 由于jℓ中的间隔,j形成一个iℓ的分区(每1≤j≤t),我们最多删除β|我ℓ|考虑这些间隔时边缘。 总结超过1≤j≤t,这总数最多为Tβ|我ℓ| v 1的少于n s -1选择中的每一个中的边缘删除。 。 。 ,V s -1。 总和ℓ= 1,。 。 。。。,。。。v s - 1,j)表示最左边的β| J |顶点w∈J使得{v 1,。。。,v s -1,w}∈E(gℓ -1),如果至少有β| J |这样的顶点,否则让Lℓ(v 1,v 2,。。。v s - 1,j)是所有此类顶点w的集合。删除所有边缘{v 1,。。。,v s - 1,w}∈E(gℓ -1),w∈Lℓ(v 1,v 2,。。。v s - 1,j)。由此产生的超图是gℓ。按定义,对于每个给定的(s-1)-tuple v 1,v 2,。。。,v s - 1,对于每个间隔j∈Jℓ,此操作最多删除β| J |表格的边缘{v 1,。。。,v s -1,w∈J。由于jℓ中的间隔,j形成一个iℓ的分区(每1≤j≤t),我们最多删除β|我ℓ|考虑这些间隔时边缘。总结超过1≤j≤t,这总数最多为Tβ|我ℓ| v 1的少于n s -1选择中的每一个中的边缘删除。。。,V s -1。总和ℓ= 1,。。。因此,e(gℓ−1) - e(gℓ) ,K,我们得到了,K,我们得到了