单变量多项式样条曲线提供了一类灵活的函数,可有效建模各种实验数据。然而,定义此类曲线的参数通常不直接提供产生数据的测量系统的任何物理信息。相反,需要从拟合模型中提取此类信息。考虑从单变量多项式样条曲线中提取信息的问题,其中信息采用曲线特征的形式,包括零交叉点、峰、谷和拐点的位置以及峰和谷的宽度。解决了与从拟合实验数据的样条曲线得出的这些特征估计值相关的不确定性的评估。
D-Wave 已经围绕其量子退火器提供了一个广泛的软件库,并且已经实现了几个转换步骤 [3]。我们不想与 D-Wave 的 API 竞争,而是希望以专注于原始问题的实例中心方法与之相伴。我们简化所提供功能的一个具体示例是处理次数大于 2 的多项式,这只能通过 D-Wave API 通过绕行获得,参见 [3],这意味着用户需要了解结构差异。在 quark 中,不需要其他任何内容,只需要基类。随着从约束问题到无约束问题的步骤,引入了具有相应惩罚项的约简变量,从而自动降低多项式的次数。
单变量多项式样条曲线提供了一类灵活的函数,可有效建模各种实验数据。然而,定义此类曲线的参数通常不直接提供产生数据的测量系统的任何物理信息。相反,需要从拟合模型中提取此类信息。考虑从单变量多项式样条曲线中提取信息的问题,其中信息采用曲线特征的形式,包括零交叉点、峰、谷和拐点的位置以及峰和谷的宽度。解决了与从拟合实验数据的样条曲线得出的这些特征估计值相关的不确定性的评估。
单变量多项式样条曲线提供了一类灵活的函数,可有效建模各种实验数据。然而,定义此类曲线的参数通常不直接提供产生数据的测量系统的任何物理信息。相反,需要从拟合模型中提取此类信息。考虑从单变量多项式样条曲线中提取信息的问题,其中信息采用曲线特征的形式,包括零交叉点、峰、谷和拐点的位置以及峰和谷的宽度。解决了与从拟合实验数据的样条曲线得出的这些特征估计值相关的不确定性的评估。
单变量多项式样条曲线提供了一类灵活的函数,可有效建模各种实验数据。然而,定义此类曲线的参数通常不直接提供产生数据的测量系统的任何物理信息。相反,需要从拟合模型中提取此类信息。考虑从单变量多项式样条曲线中提取信息的问题,其中信息采用曲线特征的形式,包括零交叉点、峰、谷和拐点的位置以及峰和谷的宽度。解决了与从拟合实验数据的样条曲线得出的这些特征估计值相关的不确定性的评估。
扩散过程渗透到人工智能的众多领域,抽象地模拟了网络中信息交换的动态,这些信息交换通常是易变的。一个核心问题是信息在网络中保留多长时间,即生存时间。对于常见的 SIS 过程,对于各种参数,预期生存时间至少是星图上网络规模的超多项式。相比之下,引入临时免疫的 SIRS 过程的预期生存时间在星图上始终最多为多项式,并且仅对于更密集的网络(例如扩展器)才为超多项式。然而,这一结果依赖于完全的临时免疫,而这在实际过程中并不总是存在的。我们引入了 cSIRS 过程,它结合了逐渐下降的免疫力,使得每个时间点的预期免疫力与 SIRS 过程的预期免疫力相同。我们在星图和扩展器上严格研究了 cSIRS 过程的生存时间,并表明其预期生存时间与没有免疫力的 SIS 过程非常相似。这表明,免疫力逐渐下降就等于没有免疫力。
量子信号处理(QSP)是一种强大的量子算法,可准确在量子计算机上实现矩阵多项式。基于QSP的量子算法的渐近分析表明,对于一系列任务,例如Hamiltonian模拟和量子线性系统问题,可以原理获得渐近最佳的结果。QSP的进一步好处是,它使用了最少数量的Ancilla Qubits,这有助于其对近中间术语量子体系结构的实现。但是,到目前为止,还没有经典稳定的算法可以计算构建QSP电路所需的相位因子。现有方法需要使用可变精度算术,并且只能应用于相对较低程度的多项式。我们在这里提出了一种基于优化的方法,该方法可以使用标准的双精度算术操作准确地计算相位因子。我们通过应用于汉密尔顿模拟,特征值过滤和量子线性系统问题的应用来证明这种方法的性能。我们的数值结果表明,优化算法可以发现相位因子准确地近似于大于10,000的多项式,误差低于10-12。
数学0991大学代数的数学技能(2个学分)与数学1100大学代数同时教授(4个学分)。一起,这些课程在一个学期内完成了数学1100资格的学生1100资格完成中级代数和大学代数涵盖的主题。大学代数的数学技能涵盖了绘图和写作方程;对多项式的分解和操作;关于理性表达的操作;指数规则;简化自由基;计算器技能;和学生的成功技能。学生必须同时完成数学0991和数学1100。B.日期上次审查/更新:2023年3月C.主要内容领域的概述:1。线性函数2。分解3。有理表达式4。激进分子5。多项式6。指数规则7。计算器技能8。学生成功技能D.课程学习成果:成功完成课程后,学生将能够:1。图2.因子并在多项式上执行操作3。对有理表达式执行操作4。使用指数规则5。简化了自由基