公共表演 我们的电影放映提供 25 分钟的夜空之旅,随后播放全天幕电影。这些放映由 WCU 本科生负责。以下是 Mather 天文馆目前正在放映的电影的概要。 小行星:极限任务 - 小行星:极限任务带领观众踏上史诗般的旅程,探索小行星为太空旅行提供的可能性。探索宇航员需要做些什么才能到达小行星并将其驯服以供我们使用,以及这种非凡的冒险如何造福人类。这种极端的任务最终可能会让我们学会如何保护我们的星球以及如何成功地在其他星球上居住。 宇航员 - 太空探索是人类有史以来最伟大的事业。要参与这次不可思议的旅程需要什么?要成为一名宇航员需要什么?在宇航员体内体验火箭发射。探索内太空和外太空的奇妙世界,从漂浮在国际空间站周围到在人体微观区域内移动。让我们的测试宇航员“查德”经受太空中发生的一切考验,发现太空中潜伏的危险。
主席先生,尊敬的各位代表,在去年 6 月举行的第 65 届外空委会议上,国际天文学联合会宣布成立“保护暗夜和宁静天空免受卫星星座干扰中心”,简称 CPS。该中心体现了第 59 届 STSC 报告中的建议,鼓励所有利益攸关方,特别是天文学界、航天工业和星座公司,合作研究和实施一切可能的措施,以减轻星座对天文学和原始夜空能见度的负面影响。该中心于 2022 年 4 月 1 日正式开始运营,旨在协调多学科的国际合作,以帮助减轻卫星星座的负面影响。该中心依靠 230 多名外部成员、个人或代表团体、机构和私营公司的合作,他们为 CPS 的四个主要领域或中心的活动做出了贡献:卫星中心、政策中心、工业和技术中心以及社区参与中心。我很高兴地报告,在这四个活动领域都取得了实质性的成就。SatHub 有效地组织了几次低地球轨道卫星的光学观测活动,在某些情况下,还与星座公司密切合作:精确测量卫星视光度,作为其轨道和姿态的函数,
在未来的一次涉及几个主要靶场和试验设施基地 (MRTFB) 的测试日中,在 O Dark Thirty,这款造型优美的自主高超音速防空导弹从发射器中冲出,划破夜空。几秒钟之内,该武器就从空中、陆地、海上和太空中的机外传感器获取了目标群的信息;所有这些都通过卫星和地面网络在多域交战中进行通信。该网络向随时准备交战的其他武器系统提供信息,而来自靶场仪表传感器的连续信息则表明交战是成功还是失败。这种系统之体系主题确保了对任何对手采取优势和果断的行动。突然间,成群的目标做出猛烈但预先编程好的机动来对抗无数的武器系统交战,从而促使所有交战的系统采取相关行动。射程控制系统自动合并所有射程传感器数据,以便对所有参与者的轨迹进行最佳估计,这些数据来自雷达、GPS、光学、遥测和其他以人工智能、机器语言和特殊数据融合算法驱动的遥感配置运行的系统。结果数据对于测试范围客户的决策过程和模型和模拟的验证以及对单个武器系统的“记录”评估和综合多领域整体评估至关重要。在涉及的 MRTFB 中,这个复杂的系统
布里格斯托克温暖空间 - **将于 2025 年 1 月 9 日恢复。** 2025 年 1 月天空指南祝大家新年快乐,希望今年的夜空比去年更加晴朗。月亮将在 13 日为满月,29 日为新月。行星:整个月从我们的位置都看不到水星。金星将在傍晚时分在西南方可见,并在 3 到 4 小时后落下。火星将整个月都可见,在午夜时分从东北偏东升起到南方约 60° 的高度,然后消失在黎明中。木星也将整个月都可见,傍晚时分从东南偏东升起到南方约 59°,并在清晨在西北方落下。土星将整个月在傍晚时分在西南方升起,并在 2 到 3 小时后落下。天王星将在傍晚时分在东南偏南方向高空约 55° 处可见(需要双筒望远镜或小型望远镜),并在月初清晨落下,月底午夜左右落下。海王星也将在傍晚时分在西南偏南方向 30° 处可见(需要双筒望远镜或小型望远镜),并在大约 4 小时后落下。10 日,月亮、木星和星团 M45(昴宿星团或七姐妹)将在傍晚时分在西南方彼此靠近。然后在 14 日,月亮和火星将在清晨时分在西南方彼此靠近。金星和土星将在 18 日至 20 日傍晚时分在西南方彼此靠近,但会在 21:00 之前落下。 30 日,巨蟹座的蜂巢星团 (M44) 将在午夜时分位于南方 57° 左右。该星团距离我们 577 光年,包含约 1000 颗恒星,但并非所有恒星都可用肉眼看到。最好使用双筒望远镜观看,最亮的恒星形成蜂巢形状,因此得名。晴朗的天空。彼得
1.“灯具”是指包括灯和用于分配光线、定位和保护灯以及将灯连接到电源的部件在内的完整照明装置,也称为“灯具”。 2.“英尺烛光 (fc)”是指投射到表面上的总光量(照度)的测量单位。一英尺烛光相当于一烛光的光源在一英尺距离处产生的照度。 3.“全截止灯具”是指灯具设计成不会在通过灯具最低点的水平面或水平面以上发射任何光线(无论是直接从灯泡发出的还是间接从灯具发出的)。 4.“眩光”是指强烈刺眼的光线和/或直接且未遮蔽的光线照射到眼睛上,导致视觉不适和视觉功能下降。 5.“灯”是指安装在灯具插座部分的人造光源,与整个组件(通常称为“灯泡”)相区别。 6.“光污染”指人造光源造成的任何不利影响,包括但不限于因眩光、光侵入、不受控制的向上照明或任何影响观看夜空能力的人造光而导致的眼睛不适或视力下降。7.“光侵入”指照射到其所在物业之外的人造光或照度,通常指从一处物业照射到另一处物业或公共通行权上的光。侵入量应以用光度计测量的英尺烛光 (fc) 表示,并且在灯光所在的物业线上不得超过 0.5 fc。确定光侵入合规性的现场测量不应包括路灯产生的光的影响。8.“流明”指用于量化灯产生的光能的单位。例如,40 瓦白炽灯产生约 400 流明,而 35 瓦高压钠灯产生约 2,300 流明。9.“户外照明灯具”是指任何临时或永久照明灯具,其安装、放置或使用方式可为室外物体或活动提供照明。户外照明灯具包括所有安装在建筑物、灯杆、护柱或其他独立结构外部的灯具,或放置方式可为任何外部区域或活动提供直接照明的灯具。10.“遮蔽”是指灯具周围或内部的屏障,有助于隐藏灯具并控制光分布。“完全遮蔽”的灯具包含一个实心屏障,不会在水平面以上发射光线,并有效遮蔽灯具的可见性。“部分遮蔽”的灯具可允许部分光线穿过半透明屏障,和/或可允许从某些角度看到灯具。11.“临时照明”是指用于特殊活动的照明,最长可达十天。
第 23 条 室外照明 第 23.1 节 结论。充足的照明可提高安全性并减少犯罪活动的机会。照明对整体安全感影响很大。充足的照明水平和适当的眩光控制对于保持能见度和帮助行人和驾驶员看清潜在危险情况都至关重要。照明不足或不均匀会在袭击者可能藏身的地方投下阴影。安全照明不能防止或制止犯罪,但可以帮助业主保护人员和财产。过多的光线也可能是一个问题,会给居民带来不美观的形象或滋扰,并且不必要地照亮夜空。没有实际用途的光被视为光污染,某些类型的灯具会造成能源浪费。 第 23.2 节 目的和意图。本文旨在减少因设计和安装不当的室外照明而造成的问题。这些规定旨在消除眩光问题并将光侵入降至最低,并制定规定避免不必要的直射光照到毗邻的房屋或街道上。第23.3 节定义。为本文的目的,定义下列术语:烛光:光源在特定方向上的强度单位。一坎德拉垂直照射到一英尺外的表面可产生一英尺烛光的光。眼镜蛇头灯:一种标准道路灯,通常安装在灯杆臂上并悬挂在道路上方 25 至 40 英尺的高度,通常安装在铝杆上,并不总能控制眩光。直射光:从灯、反射器或反射扩散器,或通过灯具的折射器或扩散透镜直接发出的光。灯具:容纳灯的组件,可能包括以下全部或部分部件:外壳、安装支架或杆座、灯座、镇流器、反射器或镜子和/或折射器或透镜。英尺烛光:在距离一烛光的均匀点光源一英尺处的表面上的照度单位,等于每平方英尺一流明或坎德拉(1 fc = 1 流明/平方英尺)或(坎德拉/距离平方)。一英尺烛光 (FC) 相当于 10.76 勒克斯(1 勒克斯 = 0.0929 FC)。全截止灯具:户外灯具经过屏蔽或构造,使得安装的灯具不会以高于水平面的角度发出直接光线。眩光:灯具发出的光线强度足以降低观看者的视力,在极端情况下会导致短暂失明,或引起烦恼或不适。高杆灯:平均高度为 60 至 100 英尺的户外照明,用于高速公路立交桥和运动场。
电磁学的麦克斯韦方程、爱因斯坦的狭义和广义相对论以及粒子物理学中基本力的规范理论。从更务实的角度来看,对称性有很多应用,例如晶体学中的应用或它们为问题研究带来的简化:对称性是手头信息背后的组织结构。因此,发现这种模式可以加深理解,就像罗夏赫测试的简单情况一样:注意到墨迹的反射对称性可以帮助孩子猜测这些图画是如何制作的,即通过将吸墨纸折叠起来。这种理解使我们能够简化处理数据的方式,并且在更深层次上可以表明存在更高层次的原理。对称性与简单性甚至优雅之间的这种联系在理论物理学中经常出现。在艺术中,对称性也经常与优雅的概念联系在一起。这并不是说对称的艺术品更美丽,因为众所周知,大多数人更喜欢对称性不是完全对称,而是略有不完美或破碎的面孔、乐曲、绘画和照片 [ 1 , 2 ] 。在物理学中,对称情况的偏差通常被认为是一种有用的近似技术,因为在自然界中很少发现完美的对称性。发现对称性的一个物理学例子是火星的运动。天文学家第谷·布拉赫在 1601 年去世前,收集了它在夜空中位置的最精确记录。这些数据中有一个底层结构,约翰尼斯·开普勒花了很多年才将其梳理成椭圆形 1 。从这种更简单的数据表示中,艾萨克·牛顿能够推导出引力定律,该定律表现出中心对称性,毫无疑问,与最初的观测集合相比,它更简单、更深入、更普遍地描述了天体的运动。快进许多年,我们现在明白,牛顿定律可以通过将对称性强加于一个称为作用的抽象对象上来获得。我们在本文中的想法是为布拉赫和牛顿之间的开普勒中间步骤的自动化或人工智能 (AI) 版本奠定基础。面向任务的功能性 AI 一般概念实现称为机器学习 (ML)。它涉及为计算机提供一般处方的算法,以便逐步逼近(或学习)适当的规则来重现特定的观察结果。这与传统程序形成了鲜明对比,传统程序缺乏这里所需的表达能力。目前,科学,尤其是物理学,正在经历一场革命 [ 3 ] ,因为在具有大数据集的实验领域中采用的 ML 方法被应用于更正式的领域,甚至用于符号数学 [ 4 ] 。ML 确实特别擅长模式识别,因此我们提出一个问题:当这些方法用于从数据中提取信息时,它们是否也能检测到它们所接触的数据中对称性的存在?如果可以,它们会自动这样做吗?它们是否自然地根据对称模式组织信息?在本文中,我们迈出了回答上述问题的第一步。除了好奇心和想要了解自然法则和机器学习的发展方式的愿望之外,我们还运用我们的方法来研究物理和艺术之间的深层联系。在第 2 节中基于物理的设置上训练算法之后,我们在第 3 节中将它们应用于艺术品并评估它们的对称性。这项工作可以进行许多扩展和应用,在第 4 节中我们将讨论这个方向的一些想法。