飞机的电动化作为减少环境负荷和提高成本效率的一种方式而不断发展 (1)。但是,我们听说航空公司希望进一步提高可操作性 (发动机响应性) 和可维护性,并通过最大限度地减少噪音和废气来实现环保运营 (2)。航空技术的进步是人类确保安全的挑战 (3),而飞机的电动化是其中的一部分。扩大和发展飞机的电动化以及扩展系统不仅有助于优化能源,而且还可以消除对复杂的液压系统、气动系统和机械机构的能量供应的需求,从而提高设计自由度和可维护性,并有可能减轻飞机重量。设计自由度的提高使构建多路复用系统变得更加容易,并提高了安全性的可靠性,这是飞机的基本和普遍要求 (4)。此外,电动机具有扭矩响应快、能够准确获知产生的扭矩、电源分配方便等特点,这三个因素(5)有可能满足航空公司在提高飞机可控性方面的所有期望。但是,从更广泛的角度来看,在汽车电动化已经向飞行汽车迈进的时代(6),商用飞机已成为交通电动化发展中被忽略的一个领域。波音公司(美国)的787客机配备了电动增压和空调系统,而空客(法国)的A380客机配备了大功率电动转向系统和电动反推驱动系统。当这些飞机进入市场时,世界预计飞机电动化的引入将迅速增长(7)。
简介 1884 年,查尔斯·帕森斯爵士开发出了世界上第一台真正强大的蒸汽涡轮机 - 这种新型发动机有可能在最大功率输出、效率、可靠性和在任何地方提供任意功率的自由度方面取代无处不在的往复式蒸汽机。同时,他还开发了一种可以承受涡轮机高转速的发电机。这使他能够设计并制造出世界上第一台蒸汽涡轮发电机,这种机器可以实现大规模发电,从而使电力变得既负担得起又人人都能用上。在他的第一台蒸汽涡轮机发明十年后,他开发出了世界上第一艘成功的涡轮驱动船 Turbinia,随后蒸汽涡轮成为需要大功率和/或高速度的船舶的主要发动机类型。查尔斯爵士的公司和所制造机器的故事直到 1931 年(查尔斯爵士去世的那一年)才被讲述。主要参考文献有 Richardson 1911 [1]、Appleyard 1933 [2]、RH Parsons 1936 [3] 和 Scaife 2000 [4]。这个故事从未在任何地方完整讲述过。目前正在努力尽可能完整地记录这段历史。本文摘录自该著作,重点介绍了 Parsons 陆上蒸汽轮机从 1884 年到 1997 年(母公司 CA Parsons & Co Ltd 成为西门子的一部分)的发展历程。出于必要,为了获得合理的篇幅,本文将仅介绍技术最先进的机器,尽管这意味着以下页面仍包含大量信息。
简介 1884 年,查尔斯·帕森斯爵士开发出了世界上第一台真正强大的蒸汽涡轮机 - 这种新型发动机有可能在最大功率输出、效率、可靠性和在任何地方提供任意功率的自由度方面取代无处不在的往复式蒸汽机。同时,他还开发了一种可以承受涡轮机高转速的发电机。这使他能够设计并制造出世界上第一台蒸汽涡轮发电机,这种机器可以实现大规模发电,从而使电力变得既负担得起又人人都能用上。在他的第一台蒸汽涡轮机发明十年后,他开发出了世界上第一艘成功的涡轮驱动船 Turbinia,随后蒸汽涡轮成为需要大功率和/或高速度的船舶的主要发动机类型。查尔斯爵士的公司和所制造机器的故事直到 1931 年(查尔斯爵士去世的那一年)才被讲述。主要参考文献有 Richardson 1911 [1]、Appleyard 1933 [2]、RH Parsons 1936 [3] 和 Scaife 2000 [4]。这个故事从未在任何地方完整讲述过。目前正在努力尽可能完整地记录这段历史。本文摘录自该著作,重点介绍了 Parsons 陆上蒸汽轮机从 1884 年到 1997 年(母公司 CA Parsons & Co Ltd 成为西门子的一部分)的发展历程。出于必要,为了获得合理的篇幅,本文将仅介绍技术最先进的机器,尽管这意味着以下页面仍包含大量信息。
电锯广泛用于森林作业中木材收集活动的树切阶段。通常,有两种类型的电锯:汽油动力和电池供电。汽油和电池电锯的性能受到不同因素的影响,包括木材的水分含量,树种,环境条件,操作员的经验以及电锯的不同技术特征(功率,重量,链条旋转速度和棒状长度)。本研究旨在确定影响汽油动力电锯和电池供电的电锯的性能的技术标准的重量。在研究中,熵方法用于确定标准的重量。作为技术标准,最大功率的链速度,总圆柱体容量,功率,条形长度,链条音高和重量标准,并考虑了汽油电锯。在电池供电的电锯中,以最大功率,条形长,链条,重量和电池电压标准处于最大功率,链速度。一般评估技术标准的重量值时,汽油驱动的电锯中最重要的性能标准是功率标准,而电池供电锯中最大功率标准的链速度。基于该电源的功率因数对于两种电锯都是重要的。通常,这项研究的结果将使用户了解技术标准在替代选择不同类型的链锯的性能方面的有效性,这些链锯经常用于不同的活动,例如在森林砍伐阶段,修剪,修剪和花园维护的城市地区。
简介 1884 年,查尔斯·帕森斯爵士开发出了世界上第一台真正强大的蒸汽涡轮机 - 这种新型发动机有可能在最大功率输出、效率、可靠性和在任何地方提供任意功率的自由度方面取代无处不在的往复式蒸汽机。同时,他还开发了一种可以承受涡轮机高转速的发电机。这使他能够设计并制造出世界上第一台蒸汽涡轮发电机,这种机器可以实现大规模发电,从而使电力变得既负担得起又人人都能用上。在他的第一台蒸汽涡轮机发明十年后,他开发出了世界上第一艘成功的涡轮驱动船 Turbinia,随后蒸汽涡轮成为需要大功率和/或高速度的船舶的主要发动机类型。查尔斯爵士的公司和所制造机器的故事直到 1931 年(查尔斯爵士去世的那一年)才被讲述。主要参考文献有 Richardson 1911 [1]、Appleyard 1933 [2]、RH Parsons 1936 [3] 和 Scaife 2000 [4]。这个故事从未在任何地方完整讲述过。目前正在努力尽可能完整地记录这段历史。本文摘录自该著作,重点介绍了 Parsons 陆上蒸汽轮机从 1884 年到 1997 年(母公司 CA Parsons & Co Ltd 成为西门子的一部分)的发展历程。出于必要,为了获得合理的篇幅,本文将仅介绍技术最先进的机器,尽管这意味着以下页面仍包含大量信息。
近年来,新能源的广泛使用使得电力设备必须在高电压、大功率、高温等恶劣环境下工作[1,2]。因此,电介质材料作为电力设备必不可少的组成部分,受到了更多的关注。电力设备中使用的固体电介质可分为聚合物电介质和无机电介质。无机电介质具有较高的温度稳定性,但也存在击穿强度(E b )低、柔韧性差的缺点,给大规模制备带来了不可忽视的困难。与无机电介质不同,聚合物电介质具有重量轻、柔韧性好、易于加工等优点[3]。同时,优异的介电性能(高E b 、低介电损耗[tanδ])使其在电力设备中得到广泛的应用。随着电子和电力系统的不断小型化和功率输出的增加,许多领域都要求聚合物电介质在恶劣环境下可靠工作。例如,火箭和航天飞机壳体附近的控制和传感电子设备需要高温电介质材料在250 ∘ C 以上工作。在地下油气勘探中,工作温度超过 200 ∘ C [4]。不幸的是,传统聚合物电介质热稳定性差,严重威胁电力设备的可靠运行,并显著缩短其生命周期。因此,在高温应用中使用二次冷却设备来降低工作温度。然而,考虑到地下勘探和空间站等大型设施所经历的极端温度,二次冷却很难实现。因此,一个更具吸引力的策略是开发能够在高温下长期工作的耐高温聚合物电介质。这种策略可以提高系统可靠性,降低成本,并消除对大型冷却系统的需求以及远程放置电子设备所需的接线和互连 [5,6]。
HL7016 3A I 2 C 控制 USB/适配器锂离子电池充电器,带电源路径和 2.1A OTG 升压概述 HL7016 是一款完全集成的开关模式锂离子电池充电器,带有功率 MOSFET、电源路径管理、I 2 C 接口和 USB On-the-Go (OTG) 升压功能。它可与各种手机、智能手机、平板电脑、移动电源和其他便携式设备中的单节或多节并联锂离子和锂聚合物电池一起使用。它的开关模式操作和低电阻电源路径可最大限度提高充电、放电和升压效率。它还可以缩短电池充电时间并延长放电阶段的电池寿命。该设备支持各种输入源,包括标准 USB 主机端口、USB 充电端口和大功率 AC-DC 适配器。它支持 3.9V 至 14V 的输入工作电压,无需电池即可为系统轨供电。它可以通过输入动态电源管理控制 (INDPM) 自动调整到输入源的最大功率输出。HL7016 可在有或没有 I 2 C 主机的情况下自主管理锂离子电池的整个充电周期。它检测电池电压并分四个阶段自动对电池充电:涓流充电、预调节、恒定电流和恒定电压。当电池充满电时,它会自动终止充电,如果电池电压低于充电阈值,则重新启动充电周期。对于具有短路保护的电池,它可以在充电开始前向电池端子提供浮动电压来重新激活电池。其 I2C 接口为充电参数和系统级通信提供了最大的可编程性。
裂变发电是一项很有前途的技术,它已被提议用于未来的几种太空用途。它正在考虑用于旨在探索太阳系甚至更远地方的大功率任务。当 NASA 的 1 kWe 千瓦斯特林技术反应堆 (KRUSTY) 原型于 2018 年完成全功率核试验时,空间裂变发电取得了巨大进展。它的成功激发了主要太空国家之间新一轮的研究竞争。本文回顾了 Kilopower 反应堆和 KRUSTY 系统设计的发展。它总结了目前正在考虑将裂变反应堆作为动力和/或推进源的任务。这些项目包括访问木星和土星系统、凯龙星和柯伊伯带天体;海王星探索任务;以及月球和火星表面基地任务。这些研究表明,对于功率水平达到~1 kWe的任务,裂变电推进(FEP)/裂变动力系统(FPS)在成本方面优于放射性同位素电推进(REP)/放射性同位素动力系统(RPS),而当功率水平达到~8 kWe时,它具有质量更轻的优势。对于飞行距离超过~土星的任务,含钚的REP可能在成本上无法接受,因此FEP是唯一的选择。地面任务更喜欢使用FPS,因为它满足10's kWe的功率水平,并且FPS大大拓宽了可能的着陆点的选择范围。按照目前的情况,我们期待在未来1-2年内实现旗舰级的裂变动力太空探索任务。
摘要。泵送的水电存储(PHES)技术自1890年代初以来一直使用,如今,是一种合并和商业成熟的技术。PHES系统允许通过将水从低层储存到更高级别的储层来存储。随后,可以通过放置在连接两个储层的甲板上的涡轮机释放这种能量,以产生能量。尽管这些植物历史上已经在大功率尺度上使用(按数百兆瓦的顺序使用),但近年来,由于它们有可能与自主岛网格中使用的可再生能源系统(RES)整合在一起,因此微型和小型植物变得越来越有趣。与PHES系统中使用的液压机相关的资本成本代表了最关键的经济因素,可以通过在反向模式下(泵作为涡轮机,pats)代替小型水电涡轮机来减轻这种因素。在每个特定案例研究中必须权衡这些预期的经济利益,其中一些缺点与使用PAT相关,这主要与特定设计的泵和涡轮机相对于较低的圆形旅行效率而言。在这项工作中,已经研究了一个小规模的PHES工厂与存在的光伏系统,以在意大利南部一个小岛的电网中进行整合。根据技术经济的考虑,已经比较了两个不同的PHE大纲。前者是由泵和涡轮机组成的典型PHES系统,而后者仅使用一系列平行泵,这些泵也可以在反向模式下工作。分析证明了整合光伏和PHES工厂的可行性,这会导致电力生产成本较低,而PAT基于PAT的轮廓结果的PHES性能则受PAT相对于液压涡轮机的较低效率而受到惩罚。
Le Maitre MVS 烟雾机是高规格烟雾机系列中的最新产品,因此可以满足大多数需要更高要求的应用。它利用原始专利技术,通过易于更换的“转换”管产生烟雾,同时受益于其更大合作伙伴 Stadium 烟雾机在开发过程中取得的进步。更大直径的转换管、更高功率的气泵、相位延迟高侧电流控制、更高温度的清洁方案都有助于提高输出和可靠性。MVS 具有集成的四通道电流协议 DMX、数字编程、数字显示器和独特的气流系统。现在可以控制音量输出,也可以控制烟雾的投射距离。同样,对两个内置大功率风扇的独特数字控制不仅可以控制投射功率,还可以控制投射相对于机器位置的角度。烟雾输出角度可通过电子方式调整至 90 度。烟雾绝不会与导轨或结构接触,否则通常会导致冷凝水和残留物的积聚。机器的控制中使用了两个通信处理器设备,可以高效、专用地控制其连接的设备。控制面板处理器包括非易失性存储器,允许将所有设置保留在该存储器中,并在启动时调用。这对于需要“开机即用”模式的俱乐部或剧院设置来说是理想的选择。最新的高温转换管清洁技术从首次开启开始仅需两分钟的操作,在机器运行期间不再需要。MVS 本身的设计考虑了用户操作和安装,因此可以在多个位置使用。底座支撑板可以调整,以在多个角度物理支撑机器,而单独的瓶架可以连接或与机器分离使用。Le Maitre 认为,这台机器是目前世界上最有效和用途最广泛的烟雾机之一,并得到了我们一贯高水平的技术和销售沟通网络的支持。有关 MVS 的所有详细信息可在我们的网站 www.lemaitreltd.com 上找到