N9000是一款高实时、高同步、大功率超高集成度双象限模块化电池模拟器,由N9000测控机箱和多种模块组成。N9000为4U高、19-19英寸宽的标准机箱,支持插入电池模拟模块、程控电阻模块、高压电源模块等类型,机箱可集成10槽测控模块,模块间电气隔离。N9000系列支持本地/远程控制和同步触发功能,可实现多模块高速同步控制,广泛应用于多通道、高集成度、大功率的自动化测试测量场景。
将交流电 (ac) 转换为电化学电池所需的直流电 (dc) 的基本元件是二极管。二极管的工作原理与单向止回阀非常相似。它只允许电流朝一个方向流动。事实上,在北美以外,用于整流的半导体被称为“阀门”。半导体开发通常始于通信和其他低功率应用中使用的小信号设备。因此,在开发出相对大功率的二极管之前,二极管已经使用了十多年。第一个用于电化学生产的二极管整流器出现在 20 世纪 60 年代中期。这些早期的机器需要大量并联二极管才能获得所需的数万安培电流。通常整流器
在传统发电不切实际的地区,可再生能源已成为传统电能的主要替代品。近年来,光伏 (PV) 和风力发电急剧扩张。在本研究中,我们提出了一种混合能源系统,该系统结合了太阳能电池板和风力涡轮发电机,作为传统电能(如火力发电和水力发电)的替代品。为了在不断变化的环境条件下跟踪可从 PV 系统和风力涡轮发电机系统中提取最大功率的运行点,我们开发了一种简单且经济高效的控制技术。详细描述了完整的混合系统,并提供了全面的仿真结果来证明系统的实用性。在 MATLAB/Simulink 中开发了一个软件仿真模型来分析混合系统的性能和可行性
随着电子技术的发展和第五代蜂窝网络的建设,更高集成度、更大功率的电子设备得到广泛应用,对电子封装材料提出了更高的要求。高铅焊料合金在过去的几十年里被广泛应用于中低温焊接,但因毒性而被禁止使用。具有适当熔化和力学性能的金基焊料合金显示出巨大的替代高铅焊料合金的潜力,近年来受到重视。但与含铅焊料合金相比,新型金基焊料合金的研究相当不足,其性能和可靠性仍不明确。本文综述了近年来低温和中温金基焊料合金的研究,介绍和分析了它们的微观结构、力学性能和可靠性,并讨论和比较了金基焊料合金的新型加工工艺。
氧化还原液流电池 (RFB) 是一种电化学液流系统,将能量存储在可溶性氧化还原对中,通常允许分离存储容量和功率输出。能量以包含氧化还原系统的两种液体介质的形式存储。这些液体被泵送通过电池,在那里发生电化学转换。RFB 的一个有趣特征是容量和功率的独立可扩展性。1 因此,如果需要存储更多能量,则不需要更大的电极,而传统电池则需要这样做,因为传统电池的能量存储和转换并不分离。这使得 RFB 对于需要存储大量能量但对最大功率的要求适中的大规模存储应用特别有趣。最重要的 RFB 类型是基于钒的(氧化还原系统 V 2 + /V 3 + 在一侧,V 4 + /V 5 + 在另一侧)。参考文献 2、3 中报告了 RFB 技术的详细描述。详细示意图可在参考文献 4 中找到。
摘要。本文介绍了“秋粘虫 (FAW) 杀虫剂”项目第一阶段的设计和任务管理。该项目有三个主要阶段:设计和能源管理阶段、无人机飞行控制阶段以及检测和杀死秋粘虫阶段。该项目的目标是在不使用化学方法的情况下检测和杀死一种在非洲和亚洲迅速蔓延的有害秋粘虫。本文重点介绍了系统第一阶段的设计、获得最大功率和控制系统的能量。提出了一种带有储能装置的光伏系统作为电源。提出了一种控制杀虫和检测任务时间安排的新算法,并研究了其对系统能量和任务周期的影响。对跟踪光伏板最大功率的不同方法进行了比较,以选择最佳(时间更短、精度更高)的方法。仿真结果表明了所提出的最大功率跟踪和任务管理系统的有效性。
• 通过自己发电或热水,可以节省能源费用。 • 运营成本低。 • 它无污染,没有浪费的副产品。 • 没有噪音或有害排放。 • 它减少了温室气体的产生量。 • 它是最可靠的可再生能源之一。 • 它不受传统电力价格波动的影响。 • 太阳能电池板可靠且使用寿命长;它们坚固耐用,如果保养得当,可以使用数十年。 • 太阳能电池可以使用一生。它们易于维护和监控。 • 它可以在偏远地区使用。 • 它既可用于低功耗用途,也可用于更大功率的用途 - 从电池充电器、手持计算器和太阳能花园灯到空调、汽车和卫星。 • 任何多余的电力都可以卖回给主电网或输入到电池组等存储系统中。 • 它支持澳大利亚可再生能源的发展。 • 购买小型发电装置 (SGU)(例如太阳能电池板)可能使您有资格获得小型技术证书 (STC)。您还可能有资格获得太阳能积分,这通过使用乘数增加了能够为符合条件的 SGU 安装创建的 STC 数量。
摘要:双级独立光伏 (PV) 系统存在稳定性和可靠性问题,其提供最大功率的效率受环境条件变化的极大影响。混合反步控制 (BSC) 是最大功率点跟踪 (MPPT) 的良好候选方案,但是,由于 BSC 的递归性质,PV 输出中存在显著的稳态振荡。该问题可以通过提出一种混合积分反步控制 (IBSC) 算法来解决,其中提出的积分作用可显著降低 PV 阵列输出在不同温度和太阳辐照度水平下的稳态振荡。同时,在交流阶段,主要挑战是减少由负载参数变化引起的 VSI 输出的稳态跟踪误差和总谐波失真 (THD)。尽管传统的滑模控制 (SMC) 对参数变化具有鲁棒性,但它本质上是不连续的并且继承了过于保守的增益设计。为了解决这个问题,提出了一种基于超扭转控制 (STC) 的动态扰动抑制策略,其中设计了一个高阶滑模观测器来估计负载扰动的影响作为集中参数,然后由新设计的控制律拒绝该参数以实现所需的 VSI 跟踪性能。所提出的控制策略已通过 MATLAB Simulink 验证,其中系统在 0.005 秒内达到稳定状态,并在峰值太阳辐射水平下提供 99.85% 的 DC-DC 转换效率。交流级稳态误差最小化为 0 V,而 THD 分别限制为线性和非线性负载的 0.07% 和 0.11%。
电锯广泛用于森林作业中木材收集活动的树切阶段。通常,有两种类型的电锯:汽油动力和电池供电。汽油和电池电锯的性能受到不同因素的影响,包括木材的水分含量,树种,环境条件,操作员的经验以及电锯的不同技术特征(功率,重量,链条旋转速度和棒状长度)。本研究旨在确定影响汽油动力电锯和电池供电的电锯的性能的技术标准的重量。在研究中,熵方法用于确定标准的重量。作为技术标准,最大功率的链速度,总圆柱体容量,功率,条形长度,链条音高和重量标准,并考虑了汽油电锯。在电池供电的电锯中,以最大功率,条形长,链条,重量和电池电压标准处于最大功率,链速度。一般评估技术标准的重量值时,汽油驱动的电锯中最重要的性能标准是功率标准,而电池供电锯中最大功率标准的链速度。基于该电源的功率因数对于两种电锯都是重要的。通常,这项研究的结果将使用户了解技术标准在替代选择不同类型的链锯的性能方面的有效性,这些链锯经常用于不同的活动,例如在森林砍伐阶段,修剪,修剪和花园维护的城市地区。
目的 用于预测 MRgFUS 丘脑切开术成功可能性的关键指标之一是整体颅骨密度比 (SDR)。然而,这一指标并不能完全预测所需的超声处理参数或技术成功率。作者旨在评估其他可能有助于技术成功的颅骨特征。方法作者回顾性研究了 2017 年至 2021 年期间在其中心接受 MRgFUS 治疗的连续特发性震颤患者。他们评估了不同治疗参数(特别是最大功率和输送能量)与一系列患者颅骨指标和人口统计数据之间的相关性。机器学习算法被用于研究是否可以仅从颅骨密度指标预测超声处理参数,以及将局部换能器 SDR 与整体颅骨 SDR 相结合是否会提高模型准确性。结果 共纳入 62 名患者。平均年龄为 77.1(SD 9.2)岁,78% 的治疗(49/63)发生在男性身上。平均 SDR 为 0.51(SD 0.10)。在评估的指标中,SDR 与治疗中使用的最大功率(ρ = −0.626,p < 0.001;局部 SDR 值 ≤ 0.8 组的比例也有 ρ = +0.626,p < 0.001)和最大能量传输(ρ = −0.680,p < 0.001)的相关性最高。机器学习算法对预测局部和整体 SDR 所需的最大功率和能量具有中等能力(最大功率的准确度约为 80%,最大能量的准确度约为 55%),对预测局部和整体 SDR 达到的平均最高温度具有很高的能力(准确度约为 95%)。结论 作者将一系列颅骨指标与 SDR 进行了比较,结果表明,SDR 单独使用时是治疗参数的最佳指标之一。此外,还提出了许多其他机器学习算法,可在获得更多数据时进行探索以提高其准确性。还应确定和探索与最终超声处理参数相关的其他指标。