10:15电池通行证:关键见解和影响介绍Tilmann Vahle,Systemiq10:15电池通行证:关键见解和影响介绍Tilmann Vahle,Systemiq
密歇根州立大学预算和财务 - 附件 3 董事会执行行动摘要 ______________________________________________________
因此,夏普总部在其简报中心内设置了一个数字影院小插图——一个 6,000 平方英尺的空间,分为 10 个专用舞台区域,用于每个主要垂直区域——向影院所有者和运营商展示如何采用最新的数字技术来帮助人们离开沙发,走进电影院。
Kristin Bruk Artinger 博士 Artinger 博士是明尼苏达大学牙科学院诊断和生物科学系教授兼研究和发现副院长。她曾任牙科学院颅面生物学系教授和科罗拉多大学安舒茨医学院研究生项目主任。此外,她还担任颅面生物学系副主任和院长执行委员会主席。Artinger 博士在加利福尼亚州欧文市的加利福尼亚大学获得博士学位,并在那里获得了理学学士学位。随后,她在马萨诸塞州波士顿的哈佛医学院 Wolfgang Driever 博士和 Mark Mercola 博士的实验室完成了博士后工作。她于 2002 年在科罗拉多大学创办了自己的实验室,并建立了一个高度协作的研究实验室,专注于了解神经嵴发育所涉及的分子和遗传机制。具体来说,她使用斑马鱼模型系统研究正常发育和颅面出生缺陷中涉及细胞命运决定、迁移和神经嵴细胞分化的基因调控网络。她目前担任《出生缺陷研究》副主编,并担任多家科学杂志的编辑委员会成员。作为项目主管,她致力于指导下一代科学家。在这里,她为一年级研究生提供强有力的指导,领导整体招聘工作以满足不同学生的需求,并建立强大的拨款申请研讨会,帮助受训人员在奖学金竞争中脱颖而出。
摘要。我们最近确定了石墨烯中受保护的拓扑半学,该拓扑半学表现为零能量边缘模式鲁棒和相互作用。在这里,我们解决了该半学的特征,并表明,与最低能带相关的霍尔电导率的Z拓扑不变,可以从谐振响应到在DIRAC点上分析的圆形极化光等效。中间能带(包括费米表面)的(非量化的)电导率响应也会引起z 2不变。我们强调散装的对应关系,作为受保护的拓扑半金属,即一个在平面中极化的自旋构型在与稳健边缘模式相关的绝缘阶段,而另一个则处于金属状态。边缘的量化运输等效于1 2 - 1
•演讲者(两天)€445.00•成员(两天)€945.00•非会员(两天)1.045.00欧元€1.045.00•大学参与者(两天)€845.00€845.00•日间票务成员1 day day day day day day•1月22日(1月22日)非会员2日(1月23日)€670.00
©2022 Elsevier出版。此手稿可在Elsevier用户许可证下提供https://www.elsevier.com/open-access/userlicense/1.0/
基于过渡金属二色元和石墨烯基于原子上的薄材料,提供了有前途的途径,以解锁异性峰中旋转厅效应(SHA)的机制。在这里,我们为扭曲的范德华异质结构开发了一个微观理论,该理论完全融合了扭曲和混乱效应,并说明了对称性破坏在自旋霍尔电流产生中的关键作用。我们发现,对顶点校正的准确处理与从流行的iη和梯子近似获得的定性和定量不同。A pronounced oscillatory behavior of skew-scattering processes with twist angle θ is predicted, reflecting a nontrivial interplay of Rashba and valley-Zeeman effects and yields a vanishing SHE for θ = 30 ◦ and, for graphene-WSe 2 heterostructures, an optimal SHE for θ ≈ 17 ◦ .我们的发现揭示了障碍和对称性破裂,作为重要的旋钮,以优化界面。
[1] C. M. Bender和S. Boettcher,具有P T对称性的非热汉尔顿人的真实光谱,物理。修订版Lett。 80,5243(1998)。 [2] W. D. Heiss,特殊点的物理学,J。Phys。 A 45,444016(2012)。 [3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。 A 42,153001(2009)。 [4] M. V. Berry,捷克的非赫米特式脱生物的物理学。 J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。80,5243(1998)。[2] W. D. Heiss,特殊点的物理学,J。Phys。A 45,444016(2012)。[3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。A 42,153001(2009)。[4] M. V. Berry,捷克的非赫米特式脱生物的物理学。J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。J. Phys。54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。54,1039(2004)。[5] W. D. Heiss,非官员运营商的特殊点,J。Phys。A 37,2455(2004)。[6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。修订版Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。77,570(1996)。[7] M.-A。Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。[8] H. Hodaei,M.-A。Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。[9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X.[10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M.Photonics 8,524(2014)。[11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。物理。社区。10,394(2014)。 [12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。 12,6297(2021)。 [13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。 修订版 x 6,021007(2016)。 [14] W. Tang,X。Jiang,K。Ding,Y.-X. Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。10,394(2014)。[12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。12,6297(2021)。[13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。修订版x 6,021007(2016)。[14] W. Tang,X。Jiang,K。Ding,Y.-X.Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Xiao,Z.-Q.Zhang,C。T。Chan和G.[15]物理。16,747(2020)。[16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X.社区。12,7201(2021)。[17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。natl。学院。SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。SCI。美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。美国117,29561(2020)。[18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。[19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。修订版Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Lett。124,086801(2020)。修订版x 9,041015(2019)。[20] K. Kawabata,K。Shiozaki,M。Ueda和M. Sato,非热物理学中的对称性和拓扑,物理学。