当前产品系列 Zlín 143 基础教练机和 Zlín 242 是全金属类同类飞机中全球最优秀的飞机之一,其飞行特性使其成为一架获奖的特技飞机。乍一看,Zlín 品牌传统上的理念显而易见:简洁中蕴含力量,安全至上。主梁(飞机最关键的受力部件)由一个简单的管道系统组成,管道内充满惰性气体,指示器连接到仪表板,通过它可以持续监测受力最大的部件。每次压力偏差都意味着梁上出现裂缝,因此飞行员会收到潜在危险的警告。另一项预防性安全功能是用于监测飞机结构应力的系统。操作员需要将系统数据发送给生产商进行评估,这可能会导致生产商停飞飞机。该系统于 1999 年获得认证,自 2000 年以来,它已安装在所有制造的飞机上。得益于此设备,使用寿命可以大大延长,例如,加拿大飞行学校已服役 13 年的九架 Z-143 飞机(参见参考资料)。另一个安全功能是大变形区。
摘要 具有高拉伸性、灵敏度和稳定性的柔性压力传感器无疑是智能软机器人、人机交互、健康监测等领域潜在应用的迫切需求。然而,目前的柔性压力传感器大多由于其多层结构,无法承受大变形,在频繁操作过程中容易出现性能下降甚至失效。本文提出一种可拉伸全纳米纤维离子电子压力传感器,其由离子纳米纤维膜作为介电层、液态金属作为电极组成。该传感器在0~300 kPa的宽范围内表现出1.08 kPa -1的高灵敏度,具有约18/22 ms的快速响应-松弛时间以及良好的稳定性。高灵敏度来自于离子膜/电极界面形成的双电层,而高拉伸性和稳定性则源于原位封装的全纳米纤维结构。作为概念验证,原型传感器阵列被集成到柔性气动夹持器中,展示了其在抓取过程中的压力感知和物体识别能力。因此,该方案提供了另一种极好的策略来制造在高拉伸性、灵敏度和稳定性方面具有出色性能的可拉伸压力传感器。
摘要:基于模板和添加剂制造技术已经证明了一些用于创建气动软执行器的制造路线。然而,随着执行器的复杂性和能力继续发展,这些方法的局限性变得越来越明显。其中包括用于设计变化,过程速度和分辨率,材料兼容性和可扩展性的困难,这妨碍了和限制技术的可能功能及其从研究到行业的过渡。这项工作提供了一种具有不同方法的计算机控制,无面罩的制造工艺,可以允许高速,低成本和灵活的气动软软驱动网络的高速创建,包括多主结构。通过定制的制造平台对此进行了研究,该平台提供了计算机控制的局部等离子体处理,以选择性地修改有机硅和聚对苯二甲酸酯(PET)体的化学行为。改变的表面化学促进了表面处理部分之间的选择性键形成,因此,对形成的气动室的设计变化和控制更大。选择性治疗模式允许创建非线性气动室设计,并且显示键合硅结构的强度可促进执行器中的大变形。此外,利用血浆和有机硅之间的不同相互作用,以达到<1 mm的特征大小,并且暴露的治疗速度为20 mm 2。然后制造了两个多物质气动软致动器,以证明平台作为软执行器的自动制造途径的潜力。
可变形图像注册对于临床诊断,治疗计划和手术导航至关重要。但是,大多数现有的注册解决方案都需要在可变形注册之前单独的刚性对准,并且可能无法满足较大的变形情况。我们提出了一个新型的边缘感知金字塔变形网络(称为EPREG),用于无监督的体积登记。特别是,我们建议从多级特征金字塔中充分利用有用的互补信息,以预测多尺度的位移场。这样的粗到细节估计促进了预测的注册场的进行性重新确定,这使我们的网络能够处理体积数据之间的大变形。此外,我们将边缘信息与原始图像作为双输入集成在一起,从而增强了图像内容的纹理结构,以促使所提出的网络额外注意以进行结构对齐的边缘感知信息。在包括MindBoggle101,LPBA40和IXI30在内的三个公共大脑MRI数据集上对我们的EPREG的效率进行了广泛的评估。实验证明,相对于骰子指数(DSC),Hausdorff距离(HD)和平均对称的表面距离(ASSD)的指标,我们的EPREG始终优于几种尖端方法。提出的EPREG是解决可变形体积登记问题的一般解决方案。
和SR +2以已知诱导超导性超导性的浓度,ND 2 CUO 4和LA 2 CUO 4。Electron doped (La 0.185 Pr 0.185 Nd 0.185 Sm 0.185 Eu 0.185 Ce 0.075 ) 2 CuO 4 and hole doped (La 0.18 Pr 0.18 Nd 0.18 Sm 0.18 Eu 0.18 Sr 0.1 ) 2 CuO 4 are synthesized and shown to be single crystal, epitaxially strained, and highly uniform.传输测量表明,所有生长的薄膜都在绝缘,而不是掺杂。退火研究表明,可以通过修饰氧气化计量和诱导金属性但没有超导性来调整电阻率。这些结果反过来又连接到扩展的X射线吸收良好的结构结果,表明高熵库层中缺乏超导性可能起源于Cu – O平面内的大变形(σ2>0.015Å2),这是由于A-部位阳离子阳离子尺寸变化引起的,这驱动了载货者本地化的本地化。These findings describe new opportunities for controlling charge- and orbital-mediated functional responses in Ruddlesden – Popper crystal structures, driven by balancing of cation size and charge variances that may be exploited for functionally important behaviors such as superconductivity, antiferromagnetism, and metal-insulator transitions while opening less understood phase spaces hosting doped Mott insulators, strange metals, quantum临界,伪胶囊和有序的电荷密度波。
白若冰 东北大学机械与工业工程助理教授 203 Snell 工程中心, 360 Huntington Ave, Boston, MA 02115 电子邮件:ru.bai@northeastern.edu 办公室电话:617-373-7150 https://sites.google.com/view/ruobingbai 教育 工程科学博士 2018 哈佛大学 论文:“水凝胶的疲劳” 导师:索志刚 理论与应用力学学士 2012 北京大学 论文:“具有表面效应和相变的锂离子电池应力分析” 导师:段慧玲 学术职位 助理教授 2021 年 1 月 - 至今 东北大学,机械与工业工程系 博士后研究员 2018 年 8 月 - 2020 年 12 月 加州理工学院,机械与土木工程系 导师:Kaushik Bhattacharya 博士后研究员 2018 年 5 月 - 8 月2018 研究生助理 2012 年 9 月 - 2018 年 5 月 哈佛大学,约翰·保尔森工程与应用科学学院 导师:索志刚 本科生助理 2010 年 2 月 - 2012 年 6 月 北京大学,湍流与复杂系统国家重点实验室 导师:段慧玲 研究兴趣 • 固体力学与大变形 • 软活性材料:水凝胶、液晶弹性体和生物材料 • 材料的断裂和粘附 • 材料的多物理场:力学、热力学、化学、光学和电磁学 • 材料的不稳定性 期刊出版物 22. Ruobing Bai、Eric Ocegueda、Kaushik Bhattacharya,“光活性半结晶聚合物中的光化学诱导相变”。 Physical Review E , 2021, 103, 033003。21. Mutian Hua, Cheolgyu Kim, Yingjie Du, Dong Wu, Ruobing Bai, Ximin He, “摇摆凝胶:基于动态屈曲的化学机械自振荡”。Matter , 2021, 4, 3, 1029-1041。
此类任务同样可以先离线学习状态转移预测模 型再使用 MPC 计算控制输入 [28-29] ,或直接使用强 化学习方法 [68-69] ,但需要大量训练数据且泛化性较 差。在准静态的局部形变控制中,更常用的方法是 在线估计局部线性模型。该模型假设线状柔性体形 状变化速度与机器人末端运动速度在局部由一个雅 可比矩阵 JJJ 线性地联系起来,即 ˙ xxx ( t ) = JJJ ( t ) ˙ rrr ( t ) ,其 中 ˙ xxx 为柔性体形变速度, ˙ rrr 为机器人末端运动速度。 由于使用高频率的闭环反馈来补偿模型误差,因此 完成任务不需要非常精确的雅可比矩阵。 Berenson 等 [70-71] 提出了刚度衰减( diminishing rigidity )的概 念,即离抓取点越远的位置与抓取点之间呈现越弱 的刚性关系,并据此给出了雅可比矩阵的近似数学 表示。此外,常用的方法是根据实时操作数据在线 估计雅可比矩阵,即基于少量实际操作中实时收集 的局部运动数据 ˙ xxx 和 ˙ rrr ,使用 Broyden 更新规则 [72] 、 梯度下降法 [73] 、(加权)最小二乘法 [33-34,74] 或卡尔 曼滤波 [75] 等方法在线地对雅可比矩阵进行估计。 该模型的线性形式给在线估计提供了便利。然而, 雅可比矩阵的值与柔性体形状相关,因此在操作 过程中具有时变性,这使得在线更新结果具有滞 后性,即利用过往数据更新雅可比矩阵后,柔性体 已经移动至新的形状,而新形状对应的雅可比矩阵 与过往数据可能并不一致。同时,完整估计雅可比 矩阵的全部元素需要机器人在所有自由度上的运 动数据,这在实际操作过程中难以实现,为此一些 工作提出根据数据的奇异值进行选择性更新或加 权更新 [74] 。此外,此类方法需要雅可比矩阵的初 值,一般在操作前控制机器人沿所有自由度依次运 动,收集数据估计初始位置的雅可比矩阵。受上述 问题影响,在线估计方法往往仅适用于局部小形变 的定点控制,难以用于长距离大形变的轨迹跟踪。 Yu 等 [31] 提出 ˙ xxx = JJJ ( xxx , rrr ) ˙ rrr 的模型形式,其中 JJJ ( · ) 为 当前状态至雅可比矩阵的非线性映射,待估计参数 为时不变形式。基于该模型,该方法将离线学习与 在线更新无缝结合,实现了稳定、平滑的大变形控 制。 Yang 等 [76-77] 使用模态分析方法建立柔性体模
材料建模一直是一个具有挑战性的问题。此类建模中出现了许多复杂性,例如非线性材料行为、复杂物理和大变形,以及多物理现象。此外,材料通常会表现出丰富的厚度响应行为,这阻碍了使用经典简化方法,并且在使用经典模拟技术时需要极其精细的网格。模型简化技术似乎是减少计算时间的合适解决方案。许多应用和材料成型过程都受益于模型简化技术提供的优势,包括固体变形、传热和流体流动。此外,数据驱动建模的最新发展为材料建模开辟了新的可能性。事实上,使用数据建模对模拟进行校正或更新导致了所谓的“数字孪生”模型的形成,从而通过数据驱动建模改进了模拟。通过使用机器学习算法,也可以对当前模型不准确的材料进行数据驱动建模。因此,在材料制造过程和材料建模框架内有效构建数字孪生的问题如今已成为一个越来越受关注的话题。数字孪生技术的最新进展是使用实验结果来校正模拟,同时也在无法通过实验定义基本事实时将其变化纳入正在运行的模拟中。本研究主题讨论了模型简化技术、数据驱动建模和数字孪生技术的最新发展,以及它们在材料建模和材料成型过程中的应用。在 Victor Champaney 等人的论文中,作者解决了非平凡插值的问题,例如,当曲线中的临界点(例如弹塑性转变点)移动位置时就会出现这种问题。为了找到该问题的有效解决方案,本文展示了几种方法,结合了模型简化技术和代理建模。此外,还展示了通过为预测曲线提供统计界限来量化和传播不确定性的替代品。本文展示了几种应用,以经典材料力学问题为例。
材料建模一直是一个具有挑战性的问题。此类建模中出现了许多复杂性,例如非线性材料行为、复杂物理和大变形,以及多物理现象。此外,材料通常会表现出丰富的厚度响应行为,这阻碍了使用经典简化方法,并且在使用经典模拟技术时需要极其精细的网格。模型简化技术似乎是减少计算时间的合适解决方案。许多应用和材料成型过程都受益于模型简化技术提供的优势,包括固体变形、传热和流体流动。此外,数据驱动建模的最新发展为材料建模开辟了新的可能性。事实上,使用数据建模对模拟进行校正或更新导致了所谓的“数字孪生”模型的形成,从而通过数据驱动建模改进了模拟。通过使用机器学习算法,也可以对当前模型不准确的材料进行数据驱动建模。因此,在材料制造过程和材料建模框架内有效构建数字孪生的问题如今已成为一个越来越受关注的话题。数字孪生技术的最新进展是使用实验结果来校正模拟,同时也在无法通过实验定义基本事实时将其变化纳入正在运行的模拟中。本研究主题讨论了模型简化技术、数据驱动建模和数字孪生技术的最新发展,以及它们在材料建模和材料成型过程中的应用。在 Victor Champaney 等人的论文中,作者解决了非平凡插值的问题,例如,当曲线中的临界点(例如弹塑性转变点)移动位置时就会出现这种问题。为了找到该问题的有效解决方案,本文展示了几种方法,结合了模型简化技术和代理建模。此外,还展示了通过为预测曲线提供统计界限来量化和传播不确定性的替代品。本文展示了几种应用,以经典材料力学问题为例。
5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。