人工智能及其在牙科中的现代应用 Akansha Vilas Bansod 博士、Sweta Kale Pisulkar SPDC 博士、Wardha 摘要:人工智能 (AI) 已以多种方式应用于医疗保健领域。它是一门工程和科学领域,与感知智能行为以及创建复制此类行为的人工制品有关。技术一直是每个行业最大的创新,牙科护理也不例外。人工智能可以作为口腔病变诊断和治疗的有用方式,并且可用于筛查和分类正在发生癌前和恶性变化的可疑口腔粘膜。可以极大地探索这一领域,以便于诊断、正确治疗和获得令人满意的结果。 关键词:人工智能、人工神经网络、深度学习、机器学习。1. 简介
此预印本版的版权持有人于2021年4月7日发布。 https://doi.org/10.1101/2021.04.05.21254656 doi:medrxiv preprint
我们州的第一个大地测量系统建立于 19 世纪末,现已发展成为一项现代基础设施资产,具有切实的经济、环境和社会效益。它可以精确定位和/或追踪建筑和自然特征的空间和时间,以及无缝集成独立来源的空间信息。如今,西澳大利亚 (WA) 大地测量系统是澳大利亚地理空间参考系统不可或缺的一部分,为澳大利亚所有测量、制图和定位应用提供基础框架。随着全球导航卫星系统 (GNSS) 技术与移动设备的广泛集成,大地测量系统支持数百万日常基于位置的应用程序用户。预计随时可用且准确的 GNSS 衍生定位,加上开放数据、高级分析和云计算,将实现更大的创新和提高生产力。精确的定位有助于提高当前和新兴应用(如空间数字孪生和智能城市)的空间能力。为了确保西澳拥有准确、可靠和相关的大地测量系统,Landgate 将继续维护其地面基础设施,提高定位精度,并增强数据质量和访问能力。 Dione Bilick Trish Scully
Markku Poutanen 1 ∙ Szabolcs Rózsa 2 国际大地测量协会 (IAG) 在每次 IUGG/IAG 大会后定期发布《大地测量学家手册》。目的是向广大大地测量界介绍当前的 IAG 结构及其规范,并介绍即将到来的立法期协会各组成部分的职权范围和官员。其中详细描述了科学计划和计划中的活动。2020 年手册的第一部分介绍了 IAG 的历史发展和现行规定(2019 年 IUGG/IAG 大会期间审查的章程、细则和规则)。第二部分总结了 2019 年 7 月在加拿大蒙特利尔举行的第 27 届 IUGG 大会期间举行的 IAG 大会的成果。主席致辞中概述了 2015 年至 2019 年最重要的 IAG 成果。发表在蒙特利尔获得 IAG 最高奖项(勒瓦卢瓦奖章、盖伊·邦福德奖和青年作家奖)的科学家的引文。本部分最后是秘书长、IAG 理事会和执行委员会会议的报告以及 IUGG 和 IAG 决议。
摘要 空间大地测量已经彻底改变了我们对北安第斯山脉和西南加勒比海区域构造的认识。中美洲和南美洲 GPS 项目始于 1988 年,首次直接测量了汇聚板块边界的俯冲,并促成了全球民用 GPS 跟踪网络的建立。哥伦比亚是 1988 年实地活动的中心,哥伦比亚地质服务局在后勤、培训和人员方面的领导是中美洲和南美洲项目成功的关键。早期 GPS 结果显示北安第斯山脉向北移动、南加勒比海变形带汇聚、巴拿马-北安第斯山脉快速碰撞以及哥伦比亚-厄瓜多尔海沟的震间“锁定”的证据。从 2007 年开始,空间大地测量随着 GeoRED 项目向前迈出了一大步,GeoRED 是一个持续运行的全球导航卫星系统网络,目前拥有 108 个站点,提供了北安第斯块体运动的第一个精确的综合模型。 GeoRED 的最新发现包括北安第斯块体正以每年 8.6 毫米的速度向东北移动,东科迪勒拉山脉正以每年 4.3 毫米的速度受到挤压,巴拿马弧正以每年约 15-18 毫米的速度向东与北安第斯块体碰撞,而巴拿马-乔科碰撞可能是东科迪勒拉山脉大部分隆升的原因。新的全球导航卫星系统连续测量有助于量化南美洲西北部和加勒比海西南部的构造变形,包括哥伦比亚海沟、加勒比海边缘、东科迪勒拉山脉的东安第斯断层系统和哥伦比亚西北部巴拿马碰撞带的地震危险;以及哥伦比亚火山的变形。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 9 月 24 日发布。;https://doi.org/10.1101/2020.09.23.310839 doi:bioRxiv 预印本
b'片上微型超级电容器(MSC)是最有前途的器件之一,可集成到微/纳米级电子设备中以提供足够的峰值功率和能量支持。然而,较低的工作电压和有限的能量密度极大地限制了它们更广泛的实际应用。在此,设计了基于Ti3C2TxMXene作为负极、活性炭作为正极的高压片上MSC,并通过一种新颖的切割喷涂法简单地制造了它。通过解决MXene的过度极化,单个非对称片上MSC可以在中性电解质(PVA / Na2SO4)中提供高达1.6V的电位窗口,并具有7.8 mF cm2的高面积电容(堆栈比电容为36.5 F cm3)和大大提高的能量密度3.5 mWh cm3在功率密度为100 mW cm3时,这远远高于其他片上储能产品。此外,MSC 表现出优异的容量保持率(10,000 次循环后仍保持 91.4%)。更重要的是,MSC 可以轻松扩大为硅晶片上串联和/或并联的高度集成阵列。显然,这项研究为开发用于片上电子产品和便携式设备的高压 MXene 基 MSC 开辟了新途径。'
冰冻圈讨论,https://doi.org/10.5194/tc-2019-30 正在审查期刊《冰冻圈讨论》的手稿,开始日期:2019 年 2 月 18 日 c ⃝ 作者 2019。CC BY 4.0 许可。
摘要 我们回顾了光学原子钟和频率传输的实验进展,并考虑了将这些技术用于大地测量的前景。今天,光学原子频率标准已经达到了 10 − 17 以下的相对频率误差,开辟了基础研究和应用研究的新领域。原子频率对引力势的依赖性使原子钟成为寻找爱因斯坦广义相对论预测偏差、测试现代统一理论和开发新型重力场传感器的理想候选者。在本综述中,我们介绍了光学原子钟的概念,并介绍了国际时钟开发和比较的现状。除了进一步提高当今最佳时钟的稳定性和准确性之外,我们还投入了大量精力来提高紧凑、便携设备的可靠性和技术准备度,以适应专业实验室以外的应用。相对频率不确定度为 10 − 18 ,预计光学频率标准的比较将与卫星和地面数据一起,以厘米级分辨率精确确定大地测量学中的基本高度参考系统。原子标准的长期稳定性将为大地测量以及对地球的建模和理解提供出色的长期高度参考。