• 本配置文件中显示的业绩结果可能包括加入该策略的摩根士丹利账户的综合数据。这些结果在配置文件的投资结果和投资组合季度回报部分中未加阴影,并带有 Select UMA 标签。 • 结果还显示了在 Select UMA 计划中启动该策略之前,管理人自己投资于其投资策略版本的账户的综合数据。这些结果以灰色阴影显示并标记为管理人。虽然这一业绩很重要,但它并未反映摩根士丹利在实施该策略方面所扮演的角色,该角色反映在配置文件的投资结果和投资组合季度回报部分的未加阴影部分中。摩根士丹利与管理人合作,向其客户提供该策略。因此,在过渡月之后,摩根士丹利不会显示管理人自己投资于其投资策略版本的账户的综合数据。因此,管理人的结果和策略的结果可能会有所不同,如下文进一步讨论的那样。 • 如果经理的业绩和策略的业绩之间的过渡月份出现在某个季度的中间,则该季度或年份将在概况的“投资业绩”和“投资组合季度回报”部分中以蓝色标出,并标有“过渡”字样。
朱利安·科尼格 1,2 |比尔吉特·阿布勒 3 |英格丽德·阿加茨 4,5,6 |托比约恩·阿克施泰特 7,8 |奥勒·安德烈亚斯森 4,9 |米娅·安东尼 10 |卡尔·尤尔根·贝尔 11 |卡佳·伯茨 12 |丽贝卡·C·布朗 13 |罗穆亚尔德·布伦纳 14 |卢卡嘉年华 15 |雨果·D·克里奇利 16 |凯瑟琳·R·卡伦 17 | Geus 18 的 Eco JC |十字架的费利伯特 11 |伊莎贝尔·吉奥贝克 19 |马克·D·费格 3 |哈坎·菲舍尔 20 |赫塔弗洛尔 21 |迈克尔·盖布勒 22,23 |彼得·J·吉安罗斯 24 | Melita J. Giummarra 25.26 |史蒂文·G·格林宁 27 |西蒙·根德尔曼 28 |詹姆斯·AJ·希瑟斯 29 |萨宾·J·赫珀茨 12 | Mandy X. 至 30 |塞巴斯蒂安·延奇克 31,32 |迈克尔·凯斯 1.33 |托拜厄斯·考夫曼 4.9 | Bonnie Klimes-Dougan 34 |斯特凡·科尔施 31.35 |玛琳·克劳奇 12 |丹尼斯·库姆拉尔 22.23 | Femke Lamers 30 |李泰浩 36 |马茨·亚历山大 7.8 |凤林10 |马丁洛策 37 |埃琳娜·马科瓦茨 38.39 |马泰奥·曼奇尼 40.41 |福尔克·曼克 12 | Kristoffer NT 价格 20,42 |斯蒂芬·B·马努克 24 |玛拉·马瑟 43 |弗朗西斯·米滕 44 |闵正元 45 |布莱恩·穆勒 17 |薇拉·穆恩奇 13 |弗劳克·尼斯 21.46 |林雅 45 |古斯塔夫·尼尔松内 8,20 |丹妮拉·奥尔多涅斯·阿库纳 31 |贝尔热·奥斯内斯 35.47 |克里斯蒂娜·奥塔维亚尼 39.48 |布伦达 WJH 彭尼克斯 30 |艾莉森·庞齐奥 45 |戈文达·R·普德尔 49 |詹尼斯·雷内尔特 22 |平忍10 |榊道子 50.51 |安迪舒曼 11 |林索伦森 35 |卡尔斯滕·施佩希特 35.52 |乔安娜·施特劳布 13 |桑德拉·塔姆 8,20,53 |米歇尔泰国 17 |朱利安·F·塞耶 54 |本杰明·乌巴尼 55 |丹尼斯·范德米 18 |劳拉·S·范维尔岑 56.57.58 |卡洛斯·文图拉-博特 59 |阿诺·维尔林格 22,23 |大卫·沃森 60 |魏鲁清 61 |朱莉娅·温特 59 |梅琳达·韦斯特伦德·施莱纳 34 |拉尔斯·T·韦斯特莱 4,9,62 |马蒂亚斯·威玛 59.63 |托拜厄斯·温克尔曼 21 |吴国荣 61 |刘贤珠 45 |丹尼尔·S·金塔纳 4.9
Lamb Meal, Chicken Meal, Oatmeal, Fresh Chicken, Whole Grain Barley, Whole Brown Rice, Millet, Chicken Fat (Preserved With Mixed Tocopherols, a Natural Source of Vitamin E), Salmon Meal (Preserved with Vitamin E and Rosemary Extract), Green Peas, Whole Eggs, Chicken Liver, Potassium Chloride, Salmon Oil (Source of DHA), Quinoa, Flaxseed, Lecithin, DL蛋氨酸,菊苣根(菊粉),维生素A,维生素D3,维生素E,烟酸蛋白,维生素C,肌醇,pantotol,D-钙硫酸盐,维生素BL,核糖叶艾比,β-胡萝卜素,维生素B6,维生素B6,叶黄素,生物蛋白B12,蛋白蛋白蛋白蛋白蛋白蛋白蛋白,蛋白蛋白蛋白质,质子蛋白蛋白质,柔韧性蛋白质,蛋白蛋白,蛋白蛋白,蛋白蛋白,蛋白质,蛋白蛋白,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白蛋白,蛋白质,蛋白质碘酸钙,硒酵母,番茄(番茄的天然来源),葡萄糖胺,胆碱氯化物,丝兰schidigera提取物,l-肉碱,曼南纳 - 寡糖,胡萝卜,苹果,苹果,苹果,甜食,蓝莓,小溪,绿色糖果(绿色糖果蛋白酶)(绿色糖果蛋白酶)(绿色糖浆蛋白酶(绿色糖)(嗜酸菌,乳杆菌,肠球菌,粪肠球菌,双杆菌嗜热杆菌),百里香,卡西亚,茴香,茴香,辣根,杜松,杜松,姜,姜,Yarrow,Rosemary提取物。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
OpenAI代表Stargate邀请合格方提交建议,以实现大规模AI数据中心的开发和建设。具体来说,Openai正在寻求地点(土地和权力)建议。目的是建立支持高级AI工作量,有助于经济发展并实现OpenAI的使命的多高夸瓦基础设施舰队。此RFP寻求提出的建议,以解决一套全面的要求,并具有确定地点和权力的特定意图,这使OpenAI的基础设施路线图能够。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
1 名古屋大学材料与系统研究所,日本名古屋 2 名古屋大学电气工程系,日本名古屋 电子邮件:{imanaka; s.sugimoto; tkato}@imass.nagoya-u.ac.jp;t.bigssk@gmail.com 摘要 — 可再生能源对于向孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的 PV 输出,但需要减少 PV 输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少弃电。自来水系统也适合 DR 资源,因为许多自来水系统都有大型水箱或水坝作为蓄水池。为了充分利用自来水系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文首先建立了包含多个需求响应资源的孤立电力系统优化模型,作为制定协调控制方法的第一步。对比了2周优化和1天优化下需求响应资源的运行情况,分析了5种光伏容量设置下长期规划的效果。仿真结果表明,需求响应协调控制的适用规则随季节和光伏安装容量的不同而不同。
2024 年 4 月 17 日 — 2019 年至 2022 年期间,美国军方和情报机构授予大型科技公司合同,最高金额至少为 530 亿美元......
