通常,这些本地实例不是在生产中部署或远程部署的完全特色版本。较小的模型,例如7或80亿个参数实例,可用于管道和参数调整以及快速周转。这些实例与更大的漏洞相同。同样,在较小的模型上开发不足,然后在较大模型上部署,不仅不仅执行针对它们的完整测试套件,而且还针对较大模型的功能进行了特定的测试。分析和攻击表面评估测试也是强制性的。这意味着测试套件应是模型大小和部署目标的函数。
背景:当前的证据表明心血管疾病(CVD)在慢性阻塞性肺疾病(COPD)的进展中起作用。但是,CVD与COPD的严重程度之间的关系仍然不足。因此,本研究旨在阐明CVD与COPD的严重程度之间的关联。方法:在这项涉及7,152个患者的横断面研究中,采用了逻辑回归,亚组和灵敏度分析来评估CVD,其子类别和COPD的严重性之间的关联。结果:多变量逻辑回归分析表明,CVD和高血压与COPD严重程度保持独立(P <0.001)。与没有CVD相比,CVD患者的严重COPD或非常严重的COPD的风险高1.701倍,而与没有高血压的患者相比,高血压患者患严重或非常严重的COPD的风险高1.686倍(P <0.05)。亚组分析表明,CVD和COPD严重程度之间的关联在男性中保持稳定,患者≤70岁,> 70岁,年龄> 70岁,BMI <24 <24或≥24kg/m 2,从未吸烟,而冠状动脉疾病仅与COPD严重性相关,仅与COPD严重性相关。此外,高血压与男性的COPD严重程度,≤70岁的患者,> 70岁> 70岁,BMI <24 <24或≥24kg/m 2,从未吸烟。敏感性分析重新确定了CVD与高血压与COPD严重程度的鲁棒性,这些患者排除了支气管扩张,结核,肺癌,肺癌,肺部高血压,肺心脏病和糖尿病(P <0.05)的患者。
1 瑞士西北应用科学与艺术大学 FHNW 工程学院,Bahnhofstrasse 6, 5210 Windisch, Switzerland; andrea.battaglia@fhnw.ch (AFB); muriel.stiefel@fhnw.ch (MZS) 2 欧洲空间研究与技术中心 (ESTEC),欧洲空间局,2201 Noordwijk,荷兰 3 Mullard 空间科学实验室,伦敦大学学院,Holmbury St. Mary,Dorking RH5 6NT,英国 4 加州大学伯克利分校空间科学实验室,7 Gauss Way,伯克利,CA 94708,美国 5 粒子物理和天体物理研究所 (IPA),瑞士苏黎世联邦理工学院 (ETHZ),Wolfgang-Pauli-Strasse 27,8039 苏黎世,瑞士 6 天体粒子与宇宙学,巴黎城大学,CNRS,CEA,F-75013 巴黎,法国 7 美国国家航空航天局戈达德太空飞行中心,8800 Greenbelt Road,Greenbelt,MD 20771,美国; albert.y.shih@nasa.gov (AYS) 8 波茨坦莱布尼兹天体物理学研究所 (AIP), An der Sternwarte 16, 14482 Potsdam, 德国; awarmuth@aip.de (AW); mverma@aip.de (MV) 9 格拉茨大学物理研究所和 Kanzelhöhe 天文台,Universitätsplatz 5, 8010 Graz, Austria 10 都柏林高等研究院,31 Fitzwilliam Place, Dublin D02 XF86,爱尔兰; peter.gallagher@dias.ie (PTG) 11 格拉斯哥大学物理与天文学院,University Avenue, Glasgow G12 8QQ,UK; iain.hannah@glasgow.ac.uk (IH) 12 诺森比亚大学数学、物理和电气工程系,泰恩河畔纽卡斯尔 NE1 8S,英国 13 捷克科学院天文研究所 (CAS),251 65 Ondˇrejov,捷克共和国; jana.kasparova@asu.cas.cz 14 西肯塔基大学物理与天文学系,Bowling Green, KY 42101,美国 15 图像和数据分析方法 (MIDA),Dipartimento di Matematica,Università di Genova,Via Dodecaneso 35,I-16146 Genova,意大利; piana@dima.unige.it (MP) 16 Centrum Bada´n Kosmicznych, PAN, ul. Bartycka 18a, 00-716 华沙, 波兰; tmrozek@cbk.pan.wroc.pl (TM) 17 Istituto Nazionale di Fisica Nucleare (INFN-Pisa), 56127 Pisa, Italy 18 Institut de Recherche en Astrophysical et Planétologie (IRAP), National Center for Space Studies (CNES), Université Toulouse III, 31062 Toulouse, France 19 物理学加州大学圣克鲁斯分校,1156 High St.,Santa Cruz,CA 95064,USA 20 圣克鲁斯粒子物理研究所,加州大学圣克鲁斯分校,Santa Cruz,1156 High St.,Santa Cruz,CA 95064,USA 21 空间研究和天体物理仪器实验室 (LESIA),CNRS-UMR 8109,Observatoire de Paris,5 Place J.扬森, 92195 默东, 法国; nicole.vilmer@obspm.fr * 通讯地址:daniel.ryan@fhnw.ch
•CHM CDH17是世界上第一个抗CDH17指导的CAR-T细胞疗法•芝加哥大学医学是开发癌症疗法的世界领导者•该临床试验的第1阶段部分旨在招募多达15名患者•现在已经服用了三名患者,现在已经有五个成功的制造业,澳大利亚,澳大利亚,10 febrss chimerics chmiric chmiric chmiric chmiric chmiric chmiric chmiric chmiric chmiric sepapeics opecirics opecriq opecirics opecirics opecirics opecirics opecirics'''''澳大利亚细胞疗法领导者“公司”)很高兴地宣布,芝加哥大学医学(Uchicago Medicine)愿意让患者参加CHM CDH17细胞疗法的1/2阶段Multi-Centre临床试验。第1/2期试验(NCT06055439)是一项两阶段研究,旨在确定建议的2期CDH17剂量,并评估其在晚期大肠癌,胃癌和肠道神经内分泌肿瘤患者中其安全性和客观反应率。CHM CDH17是针对CDH17的第三代新型CAR T细胞疗法,它是最常见的胃肠道肿瘤中与预后不良和转移相关的癌症靶标。Th Uchicago Medicine将由副教授Dan Olson领导,他的研究重点是为包括CAR-T细胞疗法在内的实体瘤开发新的免疫疗法。Uchicago Medicine还是Chimeric科学顾问委员会成员Michael Bishop教授的所在地,他以开创性的干细胞移植并发现突破性的癌症治疗而闻名。“我们正在获得CHM CDH17研究的势头,并很高兴欢迎Uchicago Medicine参加审判,” Chimeric Therapeutics首席执行官Rebecca McQualter博士说。“在CHM CDH17的五次成功制造之后,我们现在已经看到了三名在Sarah Cannon和Upenn网站上服用的患者,并期待尽快宣布进一步的进展。”预计这项研究的第1阶段部分将招募15名患者,并通过特定于2期同伴进行剂量选择和扩张。
摘要 本研究致力于评估大型语言模型 (LLM)(例如 GPT-3.5-Turbo、GPT-4 和 GPT-4-Turbo)从材料科学科学文献中提取结构化信息的能力。为此,我们主要关注信息提取的两个关键任务:(i) 对所研究材料和物理特性的命名实体识别 (NER) 和 (ii) 这些实体之间的关系提取 (RE)。由于材料信息学 (MI) 中明显缺乏数据集,我们使用基于超导体研究的 SuperMat 和通用测量评估语料库 MeasEval 进行评估。将 LLM 执行这些任务的性能与基于 BERT 架构和基于规则的方法(基线)的传统模型进行对比。我们介绍了一种用于比较分析复杂材料表达的新方法,强调化学式的标准化以解决材料科学信息评估中固有的复杂性。对于 NER,LLM 在零样本提示下无法超越基线,在少样本提示下仅表现出有限的改进。然而,使用适当的 RE 策略进行微调的 GPT-3.5-Turbo 优于所有模型,包括基线。在没有任何微调的情况下,GPT-4 和 GPT-4-Turbo 在仅提供几个示例后就表现出了卓越的推理和关系提取能力,超越了基线。总体而言,结果表明,尽管 LLM 在连接概念方面表现出相关的推理能力,但对于需要提取复杂的特定领域实体(如材料)的任务,专门的模型目前是更好的选择。这些见解为未来工作中其他材料科学子领域提供了初步指导。
1 卫星星座 6 1.1 结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Walker 分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.4 地理定位 . ...
摘要 - 行驶边缘计算(VEC)由于其为计算密集型任务提供足够的组合资源的能力而引起了近视关注。但是,如何在车辆内分配计算任务并有效地管理任务消耗的资源已成为一种挑战。为了解决这个问题,这项研究推进了使用辅助车辆(AV)进行载体任务的主张,并引入了一种新颖的辅助车辆算法(AVA)。ava既可以在车辆环境中充分利用计算资源,并同时实现任务延迟减少,能源消耗最小化以及任务完成率的增强率。此外,我们建立了一个联合学习框架,以明智地确定通过实施创造性机制的AV分配的比例。实验结果验证了我们的方法不仅可以改善关键系统性能指标,还可以确保对移动车辆的计算资源进行全面利用。
I.任务超智能即将到来(Bostrom 2017,Ashenbrenner 2024)。首先是由大型语言模型(Sakana 2024)完全设计,研究和撰写的第一批研究论文。与此前景相比,本文报告的成就是适中的。我们提示要做的GPT所做的只是摘要。对于法律界而言,这个谦虚的步骤是一个很大的一步。在我们的项目中,GPT不仅概括了单个文本。它正在撰写欧洲人权法院完整法学的结构化摘要,该法院对欧洲人权公约保护的基本自由之一。gpt在Art 11 Echr的保护下写了有关集会自由的评论。文本以评论的欧洲大陆传统编写。输出的组织方式与欧洲法律奖学金的大部分工作方式相同 - 除了作者被从方程式中取出。正如我们所证明的那样,输出看起来完全像人为写的评论。实际上它甚至表现出色。GPT评论比人类法学家撰写的竞争文本更全面,功能更大。当它可以访问其自己的评论时,GPT更有可能正确地预测欧洲人权法院的实际裁决(后),与获得其最认真的竞争对手(法院登记册已经准备的指南)相比。我们的练习结果可在此处获得:
Ameren Illinois Company和Commonwealth Edison Company提供的实际费用。与单个项目相关的价格和数量是《公共公用事业法》第16-111.5(h)条的机密,因此本文包含的信息总共提供。对于上表上的远期采购,伊利诺伊州的Ameren Company 2024-2025 1月至1月的送货年成本可能从6月至12月的实际费用进行了推断。2月至2月的英联邦爱迪生公司2024-2025交付年度的成本可能从6月至1月的实际费用进行推断。所用月份的差异是可用于各自公用事业的最终成本数据的结果。